期刊文献+

基于改进蝙蝠算法的贝叶斯网络结构学习

The Bayesian Network Structure Learning Based on the Improved Bat Algorithm
下载PDF
导出
摘要 针对蝙蝠算法在搜索评分阶段易陷入局部最优且收敛精度低,以及基于蝙蝠算法的贝叶斯网络结构学习不完善等缺点,将模拟退火算法的思想引入到蝙蝠算法中,并对某些蝙蝠个体进行高斯扰动,提出了一种改进蝙蝠算法的贝叶斯网络结构混合学习算法.混合算法首先应用最大最小父子节点集合算法(Max-min parents and children,MMPC)来构建初始无向网络的框架,然后利用改进的蝙蝠算法进行评分搜索并确定边的方向.最后把应用本算法学习的ALARM网,和蚁群算法(MMACO)、蜂群算法(MMABC)进行比较,结果表明本混合算法具有较强的学习能力和更好的收敛速度,并且能够得到与真实网络更匹配的贝叶斯网络. In this paper an improved bat algorithm for Bayesian network structure hybrid learning algorithm is presented by introducing the simulated annealing algorithm into the bat algorithm and associating Gaussian perturbations to some individual bats to improve the defects of the bat algorithm that is easy to fall into a local optimum in the search- score stage and has low convergence and the imperfection of Bayesian network structure learning based on the bat algorithm. Firstly,the max- min parents and children( MMPC) algorithm is applied to construct the initial framework of the undirected network in the hybrid algorithm,and then the improved bat algorithm is used to the score-searching and the edges' orienting. Finally,the proposed algorithm is applied to learn the ALARM network and it is found that our algorithm has more learning capabilities and better convergent rates and can obtain more real Bayesian network structure than the max- min ant colony optimization( MMACO) algorithm and the max- min artificial bee colony( MMABC) algorithm.
作者 卜宾宾 蒋艳
出处 《数学理论与应用》 2014年第3期56-64,共9页 Mathematical Theory and Applications
基金 上海市教委创新项目资助(13YZ072) 上海市一流学科(系统科学)项目资助(XTKX2012)
关键词 贝叶斯网络 蝙蝠算法 模拟退火 蚁群算法 蜂群算法 Bayesian network Bat algorithm Simulated annealing The max-min ant colony optimization (MMACO) algorithm The max-min artificial bee colony(MMABC) algorithm
  • 相关文献

参考文献15

  • 1ChickeringD,HeckermanD,andMeekC.Large-SampleLearningofBayesianNetworksisNP-hard,JournalofMachineLearningResearch,2004,5:1287-1330.
  • 2Cheng,J.,Greiner,R.,Kelly,J.,Bell,D.A.andLiu,W.LearningBayesiannetworksfromdata:Aninformation-theorybasedapproach.ArtificialIntelligence,2002,137:43-90.
  • 3Cooper,G.F.,&Herskovits,E.ABayesianmethodfortheinductionofprobabilisticnetworksfromdata.MachineLearning,1992,9(4):309-347.
  • 4Friedman,N.,Nachman,I.,&Pe’er,D.LearningBayesiannetworkstructurefrommassivedatasets:The“sparsecandidate”algorithm.InFifteenthConferenceonUncertaintyinArtificialIntelligence(UAI-99),1999:206-215.
  • 5TsamardinosI,BrownLF,andAliferisCF.Themax-minhillclimbingBNstructurelearningalgorithm.MachineLearning,2006,65:31-78.
  • 6高晓光,赵欢欢,任佳.基于蚁群优化的贝叶斯网络学习[J].系统工程与电子技术,2010,32(7):1509-1512. 被引量:11
  • 7刘欣,贾海洋,刘大有.基于粒子群优化算法的Bayesian网络结构学习[J].小型微型计算机系统,2008,29(8):1516-1519. 被引量:7
  • 8X.-S.Yang.ANewMetaheuristicBat-InspiredAlgorithm,NatureInspiredCooperativeStrategiesforOptimization(NISCO2010),Berlin:Springer,2010,284:65-74.
  • 9Xin-SheYangandAmirH.Gandomi.BatAlgorithm:ANovelApproachforGlobalEngineeringOptimization,EngineeringComputations,2012,29(5):464-483.
  • 10康立山 谢云 尤矢勇.非数值并行算法-模拟退火算法[M].北京:科学出版社,1997..

二级参考文献38

  • 1赵世安,黄敢基.模拟退火并行粒子群优化算法程序设计与研究[J].百色学院学报,2006,19(6):9-12. 被引量:8
  • 2王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 3Campos L M.Independency relationships and learning algorithms for singly connected networks[J].Journal of Experimental and Theoretical Artificial Intelligence,1998,10(4):511-549.
  • 4Campos L M,Huete J F.A new approach for learning Bayesian networks using independence criteria[J].International Journal of Approximate Reasoning,2000,24(1):11-37.
  • 5Lam W,Bacchus F.Learning Bayesian networks:an approach based on the MDL principle[J].Computational Intelligence,1994,10(4):269-293.
  • 6Heckerman D,Geiger D,Chickering D M.Learning Bayesian networks:the combination of knowledge and statistical data[J].Machine Learning,1995,20(1):197-244.
  • 7Campos L M,Fernandez L J,Gamez J,et al.Ant colony optimization for learning Bayesian networks[J].International Journal of Approximate Reasoning,2002,31(21):291-311.
  • 8Acid S,Campos L M.A hybrid methodology for learning Bayesian networks:benedict[J].International Journal of Approximate Reasoning,2001,27(3):235-262.
  • 9Dash D,Druzdel M.A hybrid anytime algorithm for the construction of causal models from sparse data[C] // Proc.of the 15th Conference on Uncertainty in Artificial Intelligence,1999:142-149.
  • 10Tsamardinos I,Brown L F,Aliferis C F.The max-min hillclimbing Bayesian network structure learning algorithm[J].Machine Learning,2006,65(1):31-78.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部