摘要
现有图像伪作融合检测算法一般直接采用特征融合或决策融合技术,普遍存在算法不易扩展或检测准确率不理想等问题。在综合利用原始图像固有特征和篡改所引入特征的基础上,探讨了一种基于特征融合和决策融合的分层融合框架,并实现基于核判别分析(kernel discriminant analysis,KDA)和证据理论的图像伪作检测算法。该算法包含粗分类和细分类两阶段。在粗分类中,利用原始图像固有特征,采用KDA技术实现特征融合,输出结果为原始图像、篡改图像和待定图像三种类别。在细分类中,利用篡改操作所引入的特征,采用证据理论进行决策融合,实现对待定图像的进一步分类。实验结果表明,该算法能有效地检测模糊操作、重采样操作、JPEG压缩以及多种篡改组合操作。
Information fusion has become a new hotspot in image forensics. In most of the currently presentedmethods, the related image forgery detection is usually carried out by using feature fusion or decision fusion. A hier-archical fusion consisted of feature fusion and decision fusion is proposed to improve performance accuracy in imageforgery detection. Firstly, multiple inherent features of a suspected image are extracted and fused by using kerneldiscriminant analysis (KDA) , then classified into forgery, non-forgery or undetermined class. Finally, for the un-determined image, tampering features are extracted and fused by using evidence theory to fulfill detection task. Ex-perimental results show the feasibility of the proposed method for image forgery detection.
出处
《科学技术与工程》
北大核心
2014年第32期63-67,共5页
Science Technology and Engineering
基金
科技部国际合作项目(2009DFR10530)
国家自然科学基金(60862003)
教育部高等学校博士点基金(20095201110002)
贵州省科学技术基金(黔科合J字(2012)2272)
贵州大学研究生创新基金资助
关键词
图像伪作检测
核判别分析
证据理论
image forgery detection kernel discriminant analysis (KDA) evidence theory