期刊文献+

基于核判别分析与证据理论的图像伪作分层融合检测 被引量:1

Image Forgery Detection Based on Kernel Discriminant Analysis and Evidence Theory
下载PDF
导出
摘要 现有图像伪作融合检测算法一般直接采用特征融合或决策融合技术,普遍存在算法不易扩展或检测准确率不理想等问题。在综合利用原始图像固有特征和篡改所引入特征的基础上,探讨了一种基于特征融合和决策融合的分层融合框架,并实现基于核判别分析(kernel discriminant analysis,KDA)和证据理论的图像伪作检测算法。该算法包含粗分类和细分类两阶段。在粗分类中,利用原始图像固有特征,采用KDA技术实现特征融合,输出结果为原始图像、篡改图像和待定图像三种类别。在细分类中,利用篡改操作所引入的特征,采用证据理论进行决策融合,实现对待定图像的进一步分类。实验结果表明,该算法能有效地检测模糊操作、重采样操作、JPEG压缩以及多种篡改组合操作。 Information fusion has become a new hotspot in image forensics. In most of the currently presentedmethods, the related image forgery detection is usually carried out by using feature fusion or decision fusion. A hier-archical fusion consisted of feature fusion and decision fusion is proposed to improve performance accuracy in imageforgery detection. Firstly, multiple inherent features of a suspected image are extracted and fused by using kerneldiscriminant analysis (KDA) , then classified into forgery, non-forgery or undetermined class. Finally, for the un-determined image, tampering features are extracted and fused by using evidence theory to fulfill detection task. Ex-perimental results show the feasibility of the proposed method for image forgery detection.
出处 《科学技术与工程》 北大核心 2014年第32期63-67,共5页 Science Technology and Engineering
基金 科技部国际合作项目(2009DFR10530) 国家自然科学基金(60862003) 教育部高等学校博士点基金(20095201110002) 贵州省科学技术基金(黔科合J字(2012)2272) 贵州大学研究生创新基金资助
关键词 图像伪作检测 核判别分析 证据理论 image forgery detection kernel discriminant analysis (KDA) evidence theory
  • 相关文献

参考文献2

二级参考文献8

共引文献15

同被引文献24

  • 1SCHOLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond [ M ]. [ S. 1. ] : MIT Press, 2002 : 25-60.
  • 2SHAWE T J, CRISTIANINI N. Kernel methods for pattern analysis [ M ]. New York : Cambridge University Press, 2004: 286427.
  • 3LANCKRIET G R G, CRISTIANINI N, BARTLETF P, et al. Learning the kernel matrix with semidefinite programming[J]. The Journal of Machine Learning Research, 2004, 5: 27-72.
  • 4XU Y, ZHANG D, JIN Z, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems[J]. Pattern Recognition, 2006, 39 (6) : 1026-1033.
  • 5SZILEGYI S M, SZILEGYI L. A fast hierarchical clustering algorithm for large-scale protein sequence data sets[J]. Computers in Biology and Medicine, 2014, 48(1) : 94-101.
  • 6MIKA S, RATSCH G, MOLLER K R. A mathematical programming approach to the kernel fisher algorithm [ C ] //Advances in Neural Information Processing Systems. Denver: [s. n. ] , 2001 : 591-597.
  • 7KIM S J, MAGNANI A, BOYD S. Optimal kernel selection in kernel fisher discriminant analysis[ C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006 : 465-472.
  • 8YE J, JI S, CHEN J. Multi-class discriminant kernel learning via convex programming[J]. The Journal of Machine Learning Research, 2008, 9: 719-758.
  • 9KHEMCHANDANI R, CHANDRA S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming[J]. European Journal of Operational Research, 2010, 203(3): 692-697.
  • 10BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[ C]// Proceedings of the 21st International Conference on Machine Learning. Banff: [ s. n. ], 2004 : 41-48.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部