期刊文献+

缆系海底观测网电力系统结构与拓扑可靠性 被引量:6

Power System Structure and Topology Reliability of Cabled Seafloor Observatory Networks
下载PDF
导出
摘要 缆系海底观测网可持续提供充裕电能和通信带宽给大量海底科学仪器.基于可靠性和经济性的原则,分析得观测网电力系统适合采用负高压单极直流输电、以海水作为电流回路、海底负载并联供电和级联式高频直流变换的总体方案,并以此为基础设计了观测网的物理架构.根据观测网的特点,总结了海底电力系统适合采用的几类典型拓扑,并以水下基站平均供电可靠度为可靠性指标,计算并比较了这些典型拓扑的可靠性,可为观测网的拓扑规划提供依据.进一步设计了海底电力系统的运行模式,以提高观测网的容错能力.研究结果可为国家未来建设大规模观测网提供参考. Cabled seafloor observatory networks(CSONs)can provide a large amount of undersea scientific instruments with sustained and abundant power.According to the principles of reliability and economy,the paper illustrates why the power system of CSONs is suitable to adopt the negative monopole DC transmission scheme with the seawater as the current returning path by parallel connecting undersea loads,and employing the cascaded high-frequency DC-DC conversion system,and then the CSONs' physical structure is established based on the analysis. According to the CSON's characteristics, several typical undersea power system topologies are summarized.With the average power feeding reliability of the undersea stations as the reliability index,the reliability indexes of these typical topologies are calculated and compared.This method can provide a basis for the CSONs' topology planning.Furthermore,the operation mode of the undersea power system is designed to enhance the CSONs' fault-tolerance capability.The study can be a reference for the future construction of large-scale national CSONs.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第10期1604-1610,共7页 Journal of Tongji University:Natural Science
基金 上海市科委重大课题(10DZ1210501) 国家"八六三"高技术研究发展计划(2012AA09A401)
关键词 海底电力系统 缆系海底观测网 负高压直流输电 拓扑可靠性 undersea power systems cabled seafloor observatory networks negative high voltage direct current power transmission topology reliability
  • 相关文献

参考文献24

  • 1Chave A D, Massion G, Mikada H. Science requirements and the design of cabled ocean observatories [J ]. Annals of Geophysics--Italy, 2006, 49(2/3): 569.
  • 2Favali P, Beranzoli L. Seafloor observatory science: a review [J]. Annals of Geophysics--Italy, 2006, 49(2/3): 515.
  • 3Person R, Aoustin Y, Blandin J, et al. From bottom landers to observatory networks [J]. Annals of Geophysics--Italy, 2006, 49(2/3): 581.
  • 4Ducklow H W, Doney S C, Steinberg D K. Contributions of long-term research and time-Series observations to marine ecology and biogeochemistry [J]. Annual Review of Marine Science, 2009, 1: 279.
  • 5Delaney J, Barga R. A 2020 vision for ocean science [C]// The Fourth Paradigm: Data-intensive Scientific Discovery. Washington: Microsoft Research, 2009: 27-38.
  • 6Smith KL, Ruhl H A, Bett B J, et al. Climate, carbon cycling, and deep-ocean ecosystems [J]. Proceedings of the National Academy of Sciences USA, 2009, 106 (46): 19211.
  • 7Ruhl H A, Andre M, Beranzoli L, et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas [ J ]. Progress of Oceanography, 2011, 91 (1): 1.
  • 8汪品先.从海底观察地球——地球系统的第三个观测平台[J].自然杂志,2007,29(3):125-130. 被引量:75
  • 9Massion G, Raybould K. MARS: the monterey accelerated research system [J]. Sea Technology, 2006, 47 (9): 39.
  • 10Dewey R, Round A, Macoun P, et al. The VENUS cabled observatory: engineering meets science on the seafloor [C]// IEEE/MTS Oceans Conference. Piscataway: IEEE, 2007 : 398-404.

二级参考文献52

共引文献123

同被引文献34

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部