摘要
目的分析桃红四物汤的组方结构和特点,寻找有意义的药物组合。方法采用SPSS 16.0软件,对组方药味的性味归经和功效模糊量化处理,运用聚类分析方法探讨组方结构和特点;从中医方剂数据库中(源于《中医方剂大辞典》)检索治疗妇科血瘀证痛经的古方,用关联规则方法中Apriori算法分析组方药味在治疗痛经的古方中使用频率及桃仁、红花分别与四物汤组方药味两两配伍频率。结果桃红四物汤中当归和红花的相似度最高,在治疗妇科血瘀证痛经方中出现频率最高;在中医古方方剂数据库中出现频率较高,尤其在治疗内科、妇科、骨伤科疾病时频率最高。结论运用聚类分析与关联规则等数据挖掘方法,能较好的发现中医临床治疗疾病的用药规律,有利于探索古方的组方结构和特点,寻找到有意义的药物组合,充实和发展中医药对理论,为临床遣方用药提供理论指导;也为研究药对及方剂的效应物质基础的实验研究提供理论依据。
Objective Association analysis among structures and characteristics of Taohongsiwu decoction and discover meaningful herb pair. Method Using SPSS 16.0 software, investigate and analyze the principles and the rule of formulas after fuzzy quantitative treatment of singie herb of Taohongsiwu decoction. From the data base on TCM prescription ( originated from Dictionary of TCM Formulae) to retrieve the formulas of treating dysmenorrhea, the method of association rule and classic Apriori algorithm was used to analyze the frequency of applica- tion of herbs and herb pairs in Taohongsiwu decoction. Results The semblance of Angelicae Sinensis Radix and Carthami Flos in Taohongsi- wu decoction was highest. The frequency of Angelicae Sinensis Radix and Carthami Flos in the formulas of treating dysmenorrhea was highest. The frequency of Angelicae Sinensis Radix and Carthami Flos in the data base on TCM prescription was also higher, especially in department of internal medicine, gynecology, osteology and fracture and wounds. Conclusion Using the data mining methods such as herb frequency count, association rules and so on, could find clinical rules of TCM for treating disease, and provide the theoretical direction for clinical us- age of prescription and herbs.
出处
《湖北中医药大学学报》
2014年第5期32-35,共4页
Journal of Hubei University of Chinese Medicine
基金
国家自然科学基金资助项目(81274058)
国家科技支撑计划(2008BAI51B01)
广东省中医药管理局项目(20131258)
广东医学院博士启动资助项目(b2012007)
江苏省高校自然科学重大基础研究项目(06KJA36022
10KJA360039)
关键词
桃红四物汤
数据挖掘
当归-红花
Taohongsiwu decoction
data mining
Angelicae Sinensis Radix and Carthami Flos