期刊文献+

宽范围连续速率时钟数据恢复电路的设计 被引量:1

Design of a Wide-Range Continuous-Rate Clock and Data Recovery Circuit
下载PDF
导出
摘要 采用0.18μm CMOS工艺,设计了一种连续速率时钟与数据恢复(CDR)电路。该CDR电路主要由全速率鉴频鉴相器、多频带环形压控振荡器、电荷泵等模块组成。其中,全速率鉴频鉴相器不但具有很好的鉴频鉴相功能,而且结构简单,减小了功耗和面积。多频带环形压控振荡器不但调谐范围很宽,而且引入到环路中的调谐增益较低,解决了高振荡频率和低增益之间的矛盾问题。采用自举基准和运放的电荷泵减小了各种非理想因素的影响。仿真结果表明,该CDR电路版图尺寸为265μm×786μm,功能正常,且能恢复622~3 125Mb/s之间的伪随机数据;在1.8V电源电压下,输入伪随机速率为3 125Mb/s时,功耗为100.8mW,恢复出的数据和时钟的抖动峰峰值分别为5.38ps和4.81ps。 A continuous-rate clock and data recovery circuit was designed in 0.18 /zm CMOS process. The CDR circuit included mainly a full-rate bang-bang phase frequency detector, multi-band ring voltage-controlled oscillator (VCO), charge pump and other modules. The full-rate phase detector PFD not only had good functions, but also had simple structure, low power consumption and area. Multi-band ring voltage-controlled oscillator not only had a wide tuning range, but also had a low tuning loop gain, which had settled the conflict between high oscillating frequency and low tuning gain. By using the charge pump through bootstrap reference and op amp, various non-ideal factors were reduced. Simulation results showed that the circuit was working properly, the CDR circuit could recover the NRZ data from 622 to 3 125 Mb/s. The core size was 265 μm × 786 μm. At 1.8 V supply voltage and 3 125 Mb/s input pseudo-random rate, the power consumption was 100.8 mW, the recovered data and clock jitter peak was 5.38 ps and 4.81 ps respectively.
出处 《微电子学》 CAS CSCD 北大核心 2014年第5期651-655,660,共6页 Microelectronics
基金 国家自然科学基金资助项目(61076073) 中国博士后科学基金资助项目(2012M521126) 江苏省自然科学基金资助项目(BK2012435) 东南大学毫米波国家重点实验室开放基金资助项目(K201223) 南京邮电大学科研启动金资助项目(NY211016) 南京邮电大学科学技术创新培训计划资助项目(SJD2012006)
关键词 连续速率时钟与数据恢复 鉴频鉴相器 压控振荡器 电荷泵 锁存器 Continuous-rate clock and data recovery Phase frequency detector Voltage-controlled oscillator Charge pump Latch
  • 相关文献

参考文献12

  • 1叶国敬,孙曼,郭淦,洪志良.一种新型的高速时钟数据恢复电路的设计和验证[J].固体电子学研究与进展,2007,27(4):529-534. 被引量:1
  • 2矫逸书,周玉梅,蒋见花,吴斌.适用于连续数据速率CDR的相位插值器研制[J].半导体技术,2010,35(10):999-1002. 被引量:5
  • 3POSTSON D,BUCHHOLZ A.A 143-360 Mb/s auto-rate selecting data-retimer chip for serial digital videosignals [C]// IEEE ISSCC.San Francisco,CA,USA.1996:196-197.
  • 4PARK J,KIM W,An auto-ranging 50-210 Mb/s clockrecovery circuit with a time to digital converter [C]//IEEE ISSCC.San Francisco,CA,USA.1999:350-351.
  • 5FRAMBACH J,HEIJNA R,KROSSCHELL R.Single reference continuous rate clock and datarecovery from 30 Mbit/s to 3.2 Gbit/s [C]// IEEECICC.Orlando,FL,USA.2002:375-378.
  • 6YANG R J,CHAO K H,LIU S I, A 200 Mb/s -2Gb/s continuous-rate clock and data recovery circuit[J].IEEE Trans Circ &.Syst,2006,53(4):842-847.
  • 7LIN S H,HSIEH C L,LIU S I.A half-rate bang-bangphase/frequency detector for continuous-rate CDRcircuits [C]// IEEE EDSSC.Tainan,Taiwan,China.2007:353-356.
  • 8张长春,王志功,吴军,郭宇峰.5Gb/s0.18μm CMOS半速率时钟与数据恢复电路设计[J].微电子学,2012,42(3):393-397. 被引量:2
  • 9JRT L,KENNETH S K,RAZAVl B,et al.Analysisand modeling of bang-bang clock and data recoverycircuits [J].IEEE J Sol Sta Circ,2004,39(9):1571-1580.
  • 10LINDOR H,DAVID S,UNO N,et al.Low-powerfully integrated 10-Gb/s SONET/SDH transceiver in0.13 jum CMOS [J].IEEE J Sol Sta Circ,2003,38(10):1595-1601.

二级参考文献41

  • 1SIDIROPOULOS S,HOROWITZ M A.A semidigital dual delay-locked loop[J].IEEE JSSC,1997,32(11):1683-1692.
  • 2LEE H C.An estimation approach to clock and data recovery[D].USA:Stanford University,2006:54-56.
  • 3CHOU J,HSIEH Y,WU J.Phase averaging and interpolation using resistor strings or resistor tings for multi-phase clock generation[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2006,53(5):984-991.
  • 4KREIENKAMP R,LANGMANN U,ZIMMERMANN C,et al.A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator[J].IEEE JSSC,2005,40(3):736-743.
  • 5JARED L Z,GRACE T,CLEMENZ L.Phase interpolator with noise immunity:US,6111445[P].2000:1-36.
  • 6HANUMOLU P,KRATYUK V,WEI G.A.sub-picosecond resolution 0.5-1.5 GHz digital-to-phase converter[J].IEEE JSSC,2008,43(2):414-424.
  • 7WANG Z-G. MultiGbits/s data regeneration and clock recovery IC design [J]. Annals of Telecommunica- tions, 1993, 48(3): 132-142.
  • 8WANG Z-G, BERROTH M, SEIBEL J, et al. 19 GHz monolithic integrated clock recovery using PLL and 0. 3 htm gate-length quantum-well HEMT's [C] // IEEE ISSCC. San Francisco, CA, USA. 1994:87-89.
  • 9LEE J, LIU M. A 20Gb/s burst-mode CDR circuit using injection-locking technique [C]//IEEE ISSCC. San Francisco, CA, USA. 2007: 46-47.
  • 10NOGAWA M, NISHIMURA K, NISHIMURA S. A 10 Gb/s burst mode CDR IC in 0. 13 um CMOS [C] // IEEE ISSCC. San Francisco, CA, USA. 2005: 228-229.

共引文献18

同被引文献5

  • 1LEE J, LIU M C. A 20 Gb/s burst-mode CDR circuit using injection locking technique [J]. IEEE J Sol Sta Circ, 2008, 43(3): 619-630.
  • 2MARUKO K, SUGIOKA T, HAYASH! H, et ah A 1. 296-to-5. 184 Gb/s transceiver with 2.4 mW/(Gb/ s) burst-mode CDR using dual-edge injection locked oscillator [C] // IEEE ISSCC. San Francisco, CA, USA. 2010: 364-365.
  • 3NOGAWA M, NISHIMURA K, KIMURA S, et ah A 10 Gb/s burst-mode CDR IC in 0.13μm CMOS [C] // IEEE ISSCC. San Francisco, CA, USA. 2005, 1: 228-229.
  • 4CHOLC, LEE C, CHUNGC C, et ah A 33.6-to- 33.8 Gb/s burst-mode CDR in 90 nm CMOS [J]. IEEE J Sol Sta Circ, 2009, 44(3): 775-783.
  • 5ABIRI B, SHIVNARAINE R, SHEIKHOLESLAMI A, et ah A 1-to-6 Gb/s phase-interpolator-based burst-mode CDR in 65 nm CMOS [C] // IEEE Int Sol Sta Circ Conf Dig Tech Pap. San Francisco, CA, USA. 2011: 154-156.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部