期刊文献+

基于伪相关性等级的图像检索重排序算法

Image search reranking method based on pseudo relevance degree
下载PDF
导出
摘要 随着多媒体技术的不断发展,每天大量的图像被制造出来,在此情况下,基于内容的图像检索技术发展迅猛。文中提供了一个在基于文本的初始检索结果基础之上,利用伪相关等级信息检索重排序的算法。利用少量的相关性等级计算出其他未标注图像的伪相关性等级,最终根据伪相关等级进行重排序。 With the rapid development of multimedia technology, a large number of digital images swarm into people's daily lives. Thus, content based image retrieval (CBIR) is more and more important and image search reranking has become one of the hot techniques in this area. This paper proposes a simple reranking method which utilizes the information of pseudo relevance degree. With only a few relevance degree labels, it calculates the pseudo relevance degrees of other unlabeled images, and then reranks images based on the degrees. The experimental results on the popular MSRA-MM dataset illustrate the effectiveness of the proposed method.
出处 《信息技术》 2014年第10期103-105,109,共4页 Information Technology
关键词 图像检索 相关性等级 重排序技术 image retrieval relevance degree visual search reranking
  • 相关文献

参考文献12

  • 1李向阳,庄越挺,潘云鹤.基于内容的图像检索技术与系统[J].计算机研究与发展,2001,38(3):344-354. 被引量:153
  • 2Eakins J, Graham M, Franklin T. Content-based image retrieval [ C]//Library and Information Briefings. 1999.
  • 3时常青,张萌.基于互联网的图像信息检索技术[J].电脑知识与技术,2008,4(34):1825-1826.
  • 4张静,曲晓杰,冀中,苏育挺.基于内容的图像和视频搜索重排序技术综述[J].计算机工程与应用,2011,47(29):171-174. 被引量:7
  • 5Liu T. Learning to Rank for Information Retrieval [ J ]. Foundations and Trends in hfformation Retrieval ,2009,3 ( 3 ) :225 - 331.
  • 6Burges Chris, Shaked Tal, Renshaw Erin, et al. Learning to rank using gradient descent[ C ]. ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning. Bonn : Association for Computing Machinery,2005 : 89 - 96.
  • 7Xu J,Cao Y B. Cost-sensitive learning of SVM for ranking[ C]. Ma- chine larning: ECML 2006 ,Springer Berlin Heidelberg,2006:833 - 840.
  • 8Joachims T. Svmlight: SVM-Light Support Vector Machine [ EB/ OL]. [ 2004 - 09 - 02 ]. http ://svmlight. joachims, org/. University of Dortmund.
  • 9He J, Li M,Zhang H J,et al. Manifold-ranking based image retrieval [ C ]//Proceedings of the 12th annual ACM international conference on Multimedia. ACM ,20(M :9 - 16.
  • 10Wang M, Yang L, Hua X, MSRA-MM : bridging research and indus- trial societies for multimedia information retrieval [ R ]. Microsoft Technical Report, Beijing, MSR - TR - 2009 - 30,2009.

二级参考文献66

  • 1庄越挺.智能多媒体信息分析与检索的研究[博士论文].杭州:浙江大学,1998..
  • 2徐冬溶.设计中形象类比生成的研究[博士论文].杭州:浙江大学,1995..
  • 3李向阳.基于内容的图像数据库检索技术极其模型的研究[博士论文].浙江大学,1999..
  • 4Fan J,Shen Y,Yang C,et al.Structured max-margin learning for inter-related classifier training and multilabel image annotation[J]. IEEE Transactions on Image Processing,2011,20(3) : 837-854.
  • 5Yan R, Huet B, Sukthankar R.Large-scale multimedia retrieval and mining[J],IEEE Multimedia, 2011,18 ( 1 ) :11 - 13.
  • 6Liu Y,Mei T,Wang M,et al.Typicality-based visual search rerank- ing[J].IEEE Transactions on Circuits and Systems for Video Technology, 2010,20 ( 5 ) .. 749-755.
  • 7Yao T,Mei T,Ngo C W.Co-reranking by mutual reinforcement for image[C]//ACM International Conference on Image and Video Retrieval, Xi' an, China, 2010 : 34-41.
  • 8Natsev A, Haubold A, Tesic J, et al.Semantic concept-based query expansion and re-ranking for multimedia retrieval[C]//ACM In ternational Conference on Multimedia, New York, USA, 2007: 991-1000.
  • 9Li H,Wang M,Hua X S.A large-scale Web multimedia dataset[C]// IEEE International Conference on Data Mining Workshops, Miami, Florida, USA, 2009 : 164-169.
  • 10陈丹雯,吴玲达.一种基于互增强原则的视频检索重排序方法[c]//第三届和谐人机环境联合学术会议,济南,2007:143.150.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部