期刊文献+

基于图排序的词汇情感消歧研究 被引量:3

Word Emotion Disambiguation Based on Graph Ranking
下载PDF
导出
摘要 词汇情感消歧是文本情感倾向性分析的关键技术之一。该文在分析比较了词汇情感消歧和词义消歧异同后,从情感分析角度出发,提出了基于图排序的词汇情感消歧方法。该方法通过自动获取和人工校正相结合的方式获得多情感词汇,然后根据语义关系构建词义关系图,进而在词义关系图上迭代计算直至收敛,最后选择多情感词汇的词义中权值最大的词义作为结果输出,从而实现情感消歧。该文分别在新浪微博语料库和情感语料库上验证了该方法的有效性。 Word emotion disambiguation is vital to sentiment analysis. After discussing the differences between word emotion disambiguation and word sense disambiguation, we select the multi emotional word automatically as well as manually. From the aspect of sentiment analysis, we propose a word emotion disambiguation method based on graph ranking which builds directed meaning graphs according to semantic relations, and iteratively seleetes the most weighted sense of the given word as the right output. Results from MicroBlog corpus and emotional corpus, prove our method is superior than the eithor the method based on part of speech and emotional frequencies or the method based on Bayesian model.
出处 《中文信息学报》 CSCD 北大核心 2014年第6期129-136,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(60973068 61277370) 辽宁省自然科学基金(201202031)
关键词 多情感词汇 图排序 情感消歧 multi affect words graph ranking word emotion disambiguation
  • 相关文献

参考文献15

  • 1Pang B,Lee L.Opinion mining and sentiment analysis[J] .Foundations and trends in information retrieval,2008,2(1-2):1-135.
  • 2Liu B,Zhang L.A survey of opinion mining and sentiment analysis[M] .Mining Text Data.Springer US,2012:415-463.
  • 3何径舟,王厚峰.基于特征选择和最大熵模型的汉语词义消歧[J].软件学报,2010,21(6):1287-1295. 被引量:37
  • 4张仰森,黄改娟,苏文杰.基于隐最大熵原理的汉语词义消歧方法[J].中文信息学报,2012,26(3):72-78. 被引量:8
  • 5车玲,张仰森.面向词义消歧的条件随机场模型库构建[J].计算机工程,2012,38(20):152-155. 被引量:1
  • 6Mihalcea R.Using wikipedia for automatic word sense disambiguation[C] //Proceedings of Human Language Technology conference and conference on Empirical Methods in Natural Language Processing,Rochester,2007,196-203.
  • 7Navigli R,Ponzetto S P.Joining forces pays off:Multilingual joint word sense disambiguation[C] //Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning.Association for Computational Linguistics,2012:1399-1410.
  • 8Faralli S,Navigli R.A new minimally-supervised framework for domain Word Sense Disambiguation[C] //Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.Association for Computational Linguistics,2012:1411-1422.
  • 9陈建美,林鸿飞.基于贝叶斯模型的词汇情感消歧[C] 第九届全国计算语言学学术会议论文集,大连,2007:594-599.
  • 10Yang L,Lin H.Construction and application of Chinese emotional corpus[M] .Chinese Lexical Semantics.Springer Berlin Heidelberg,2013:122-133.

二级参考文献45

共引文献497

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部