期刊文献+

基于句法语义特征的中文实体关系抽取 被引量:49

Chinese Named Entity Relation Extraction Based on Syntactic and Semantic Features
下载PDF
导出
摘要 实体关系抽取的核心问题是实体关系特征的选择。以往的研究通常都以词法特征、实体原始特征等来刻画实体关系,其抽取效果已难再提高。在传统方法的基础上,该文提出一种基于句法特征、语义特征的实体关系抽取方法,融入了依存句法关系、核心谓词、语义角色标注等特征,选择SVM作为机器学习的实现途径,以真实新闻文本作为语料进行实验。实验结果表明该方法的F1值有明显提升。 Identifying the relation features between named entities is the key aspect in named entity relation extrac- tion. Traditional methods usually chose the lexical features and other surface features, which are well addressed al- ready. This paper proposes a novel Chinese named entity relation extraction method, adding such syntactic and se- mantic features as dependency parsing, core predicate verb and semantic role labeling etc. Experimented by SVM o- ver a true news text corpus, the results indicate that this method could improve the F1 value significantly.
出处 《中文信息学报》 CSCD 北大核心 2014年第6期183-189,共7页 Journal of Chinese Information Processing
基金 国家社会科学基金重大项目(12&2D223) 国家"十二五"科技支撑计划课题(2012BAK24B01) 国家自然科学基金(61300144) 国家语委"十二五"重点项目(ZDI125-1) 教育部/国家外国专家局高等学校学科创新引智计划项目(B07042) 湖北省自然科学基金重点项目(2011CDA034) 华中师范大学中央高校基本科研业务费项目(CCNU13A05014 No.CCNU13C01001 CCNU13F010)
关键词 句法特征 语义特征 实体关系抽取 SVM syntactic features semantic features named entity relation extraction SVM
  • 相关文献

参考文献18

  • 1http://trend.cnki.net/TrendSearch/trendshow.htm?searchword=%u5173%u7CFB%u62BD%u53D6,访问时间:2014-5-21.
  • 2Kushmerick,N,Weld,D,and Doorenbos,R.Wrapper induction for information extraction[C] //Proceedings of Fifteenth International Joint Conference on Artificial Intelligence.Nagoya,Japan:1997:729-737.
  • 3D Zelenko,C Aone,A Richardella.Kernel methods for relation extraction[J] .The Journal of Machine Learning Research,2003(3):1083-1106.
  • 4Philippe Thomas,Mariana Neves,Illéés Solt.Relation Extraction for Drug-Drug Interactions using Ensemble Learning[C] //Proceedings of Drug-Drug Interaction Extraction,Huelva,Spain:2011:11-18.
  • 5Mihai Surdeanu,Julie Tibshirani,Ramesh Nallapati,et al.Multi-instance Multi-label Learning for Relation Extraction[C] //Proceedings of Conference on Empirical Methods in Natural Language Processing and Natural Language Learn ing.Jeju Island,Korea:2012:455-465.
  • 6Haiguang Li,Gongqing Wu,Xuegang Hu,et al.A relation extraction method of Chinese named entities based on location and semantic features[J] .Applied Intelligence,2013,38(1):1-15.
  • 7何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 8徐芬,王挺,陈火旺.基于SVM方法的中文实体关系抽取[C] //第九届全国计算语言学学术会议,中国,大连,2007:497-502.
  • 9陈鹏,郭剑毅,余正涛,线岩团,严馨,魏斯超.基于凸组合核函数的中文领域实体关系抽取[J].中文信息学报,2013,27(5):144-148. 被引量:7
  • 10胡宝顺,王大玲,于戈,马婷.基于句法结构特征分析及分类技术的答案提取算法[J].计算机学报,2008,31(4):662-676. 被引量:24

二级参考文献98

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 3吴友政,赵军,徐波.基于无监督学习的问答模式抽取技术[J].中文信息学报,2007,21(2):69-76. 被引量:9
  • 4刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 5董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 6Mitchell T M 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 7Shen D, Lapata M. Using semantic roles to improve question answering[C]//Annie Zaenen, Antal van den Bosch. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Edmonton: Association for Computational Linguistics, 2007 : 12-21.
  • 8Mihai S, Sanda H,John W. Using predicate--argument structures for information extraction[C]// Erhard W Hinrichs, Dan Roth. Proceedings of the Annual Meeting on Association for Computational Lingustics. Sapporo.- Association for Computational Linguistics, 2003 :8-15.
  • 9Bilotti M W, Ogilvie P, Callan J, et al. Structured retrieval for question answering[C]//Kraaij W, de Vries AP, Clarke CLA, eds. Proceedings of the 30th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM,2007 ,351-358.
  • 10Braz R,Girju R,Punyakanok V,Roth D,etal. An inference mod- el for semantic entailment in natural language[C]// Cristiano Castelfranchi. National Conference on Artificial Intelligence. Virginia: AAAI, 2005:1 678-1 679.

共引文献104

同被引文献273

引证文献49

二级引证文献543

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部