期刊文献+

A Weak Convergence Theorem for A Finite Family of Asymptotically Nonexpansive Mappings

A Weak Convergence Theorem for A Finite Family of Asymptotically Nonexpansive Mappings
下载PDF
导出
摘要 The purpose of this paper is to prove a new weak convergence theorem for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach space. The purpose of this paper is to prove a new weak convergence theorem for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach space.
出处 《Communications in Mathematical Research》 CSCD 2014年第4期295-300,共6页 数学研究通讯(英文版)
基金 The NSF (11271282) of China
关键词 asymptotically nonexpansive mapping weak convergence common fixed point uniformly convex Banach space asymptotically nonexpansive mapping weak convergence common fixed point uniformly convex Banach space
  • 相关文献

参考文献7

  • 1Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mapping. Proc. Amer. Math. Soc., 1972, 35: 171-174.
  • 2Chang S S, Tan K K, Lee H W J, Chart C K. On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings. J. Math. Anal. Appl., 2006, 313: 273-283.
  • 3Osilike M O, Udomene A. Demiclosedness principle and convergence theorems for strictly pseu- docontraetive mappings of Browder-Petryshyn type. J. Math. Anal. Appl., 2001, 256: 431-445.
  • 4Guo W P, Cho Y J. On the strong convergence of implicit iteration processes with errors for a finite family of asymptotically nonexpansive mappings. Appl. Math. Lett., 2008, 21: 1046-1052.
  • 5Chang S S, Cho Y J, Zhou H Y. Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings. J. Korean Math. Soc., 2001, 38: 1245-1260.
  • 6Falset J G, Kaczor W, Kuczumow T, Reich S. Weak convergence theorems for asymptotically none~pansive mappings and semigroups. Nonlinear Anal., 2001, 43: 377-401.
  • 7Guo W P, Guo W. Weak convergence theorems for asymptotically nonexpansive nonself- mappings. Appl. Math. Lett., 2011, 24: 2181-2185.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部