期刊文献+

Interpolation by Bivariate Polynomials Based on Multivariate F-truncated Powers

Interpolation by Bivariate Polynomials Based on Multivariate F-truncated Powers
下载PDF
导出
摘要 The solvability of the interpolation by bivariate polynomials based on multivariate F-truncated powers is considered in this short note. It unifies the pointwise Lagrange interpolation by bivariate polynomials and the interpolation by bivariate polynomials based on linear integrals over segments in some sense. The solvability of the interpolation by bivariate polynomials based on multivariate F-truncated powers is considered in this short note. It unifies the pointwise Lagrange interpolation by bivariate polynomials and the interpolation by bivariate polynomials based on linear integrals over segments in some sense.
作者 Yuan Xue-mei
出处 《Communications in Mathematical Research》 CSCD 2014年第4期379-382,共4页 数学研究通讯(英文版)
基金 The NSF (10401021) of China
关键词 multivariate F-truncated power point-wise Lagrange interpolation solvability of an interpolation problem multivariate F-truncated power point-wise Lagrange interpolation solvability of an interpolation problem
  • 相关文献

参考文献7

  • 1Xu Z. Multivariate F-splines and fractional box splines. J. Fourier Anal. Appl., 2009, 15:723 738.
  • 2Hakopian H. Multivariate divided differences and multivarite interpolation of Lagrange and Hermite type. J. Approx. Theory, 1982, 34: 286-305.
  • 3Liang X. Multivariate Polynomial Interpolation and Approximation. Master's Thesis. Chang- chun: Jilin University, 1965.
  • 4Bojanov B, Georgieva I. Interpolation by bivariate polynomials based on Radon projections. Studia Math., 2004, 162:141-160.
  • 5Cavaretta A, Micchelli C, Sharma A. Multivariate interpolation and the Radon transform, Part I. Math. Z., 1980, 174: 263-279.
  • 6Cavaretta A, Mieehelli C, Sharma A. Multivariate Interpolation and the Radon Transform, Part II. in: DeVore R, Seherer K. Quantitive Approximation. New York: Academic Press, 1980: 49-62.
  • 7Micchelli C. On a Numerically Efficient Method for Computing Multivariate B-splines. in: Sehempp W, Zeller K. Multivariate Approximation Theory. Basel: Birkhauser, 1979:211-248.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部