摘要
广泛用于计算数学、矩阵理论、数值分析、数学物理、控制理论中的非奇异H-矩阵,一直是国内外学者们所关注的研究课题.特别是对于非奇异H-矩阵的判定条件的探讨,更是一些学者讨论的热门课题,近几年,取得了一些很好的充分条件.从矩阵自己所含元素为基本点,联系某些结果,并对其适量改造,得出了非奇异H-矩阵新的判定方法,并给出数值例子说明新判据具有比原有定理更大的适用范围.
The multidisciplinary non - singular H - matrix which is widely used in computational mathemat-ics,matrix theory,numerical analysis,mathematical physics and control theory has been a research topic by the scholars both at home and abroad. Especially,the exploration of the judgement conditions of nonsingular H - ma-trix has been the hot topic by some scholars in recent years,and has gained some very good sufficient conditions. Some results are appropriate improvement;new judging method of non - singular H - matrices is given. Numerical examples show that compared with the original results the new criterion has greater advantages.
出处
《平顶山学院学报》
2014年第5期4-7,共4页
Journal of Pingdingshan University
基金
河南省省级研究项目(2012SJGLX125)
河南省应用数学重点学科项目
关键词
非奇异H-矩阵
对角占优
Α-对角占优矩阵
non - singular H - matrix
diagonal dominance
α - diagonally dominant matrices