期刊文献+

Dirichlet级数的增长性研究

The Growth of Dirichlet Series
下载PDF
导出
摘要 利用型函数和最大项m(σ)的几何意义研究全平面上Dirichlet级数的增长性,得到了Dirichlet级数增长性与系数指数之间的一个结论. The growth of Dirichlet series through type function and the geometric meaning of maximal term is studied and one theorem about the relations between the growth of coefficient and index is obtained.
出处 《平顶山学院学报》 2014年第5期34-36,共3页 Journal of Pingdingshan University
关键词 DIRICHLET级数 增长性 型函数 Dirichlet series growth type - function
  • 相关文献

参考文献3

二级参考文献33

  • 1Vaisala J. Lectures on n-Dimensional Quasiconformal Mappings [M]. New York: Springer Verlag, 1971.
  • 2Gehring F W, Hayman W K. An Inequality in the theory of conformal mapping [J]. J. Math. Pure Appl., 1962,41:353-361.
  • 3Pommerenke Ch, Rohde S. The Gehring-Hayman inequality in conformal mapping [C]// Gehring F W, Duren P L. Quasiconformal Mapping and Analysis. New York: Springer Verlag, 1998.
  • 4Heinonen J. The diameter conjecture for quasiconformal maps is true in space [J]. Proc. Amer. Math. Soc., 1995,123(6):1709-1718.
  • 5Martio O, Nakki R. Boundary HSlder continuity and quasiconformal mappings[J]. J. London Math. Soc., 1991,44(2):339-350.
  • 6Jaenisch S. Length distortion of curves under conformal mappings [J]. Michigan Math. J., 1968,15:121-128.
  • 7Oyma K. Harmonic measure and conformal length[J]. Proc. Amer. Math. Soc., 1992,115(3):687-689.
  • 8Fernandez J L, Hamilton D H. Length of curves under conformal mappings[J]. Comment. Math. Helv., 1987,62(1):122-134.
  • 9Gehring F W, Hayman W K, Hinkkanen A. Analytic functions satisfying HSlder conditions on the bound- ary[J]. J. Approx. Theory, 1982,35(3):243-249.
  • 10Kaufman R, Wu J M. Distances and the Hardy-Littlewood property [J]. Complex Variables Theory Appl., 1984,4(1):1-5.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部