期刊文献+

S→N烷基重排反应的机理和溶剂化效应

Mechanism and solvent effect of S→N alkyl rearrangement
原文传递
导出
摘要 采用密度泛函理论的B3LYP方法、从头算的MP2方法和自洽反应场极化连续模型(PCM),在6-311++G(2d,2p)基组水平上研究了N,N’-二甲基-S-异苯并呋喃在气相和溶液中发生S→N烷基重排反应的机理、溶剂效应和取代基效应.结果表明:该反应通过四元环机理和双位迁移机理生成产物,在气相和溶剂水中,双位迁移途径的能垒均比四元环途径低,反应主要通过双位迁移途径生成产物.在气相,苯环上发生-Cl,-NO2和-OCH3取代时,双位迁移途径的能垒在MP2/6-311++G(2d,2p)水平上比没有取代时分别低4.18,7.61,4.96kJ/mol,反应的取代基效应不明显.而在溶剂水中,苯环上发生-Cl,-NO2和-OCH3取代时,双位迁移途径的能垒在PCM-MP2/6-311++G(2d,2p)水平上比气相时分别低37.73,39.96和37.17kJ/mol,反应的溶剂化效应非常明显.理论研究结果与实验观察结果一致. The SS→N alkyl rearrangement mechanism and substituted effect and solvent effect of the N, N'-dimethyl-S-isobenzofuranon are studied by B3LYP, MP2 methods and the polarizable continuum model(PCM) with 6-311++G(2d,2p) basis set. The results show that the reaction occurs through the four-membered ring and the two consecutive back-side pathways to yield the products. The energy barrier of the two consecutive back-side pathway is lower than that of the four membered ring path- way. The reaction mainly occurs through the two consecutive back-side pathway both in gas phase and water. In gas phase, when -C1, -NO2 and -OCH3 substituents locate on the orthoposition of ben- zene, the energy barriers of the two consecutive back-side pathways are lower than these of the path- ways by 4.18,7.61,4.96 kJ/mol at the PCM-MP2/6-311++G(2d,2p) level. The substituent effect is not obvious. In water, when -C1, -NO2 and -OCH3 substituents locate on the orthoposition of benzene, the energy barriers of the two consecutive back-side pathways are lower than these of the pathways in gas phase by 37.73, 39.96 and 37.17 kJ/mol at the PCM-MP2/6-311++G(2d,2p) lev- el. The solvent effect is obvious. The theoretical results are consistent with the experimental observation.
出处 《分子科学学报》 CAS CSCD 北大核心 2014年第5期432-440,共9页 Journal of Molecular Science
基金 油气藏地质及开发工程国家重点实验室开放基金资助项目(PLN1124)
关键词 N N’-二甲基-S-异苯并呋喃 S→N烷基重排 溶剂化效应 反应机理 密度泛函理论 N, N'-dimethyl-S-isobenzofuranon SS→NN alkyl rearrangement solvent effect reaction mechanism density functional theory
  • 相关文献

参考文献12

  • 1SIMAN P,KARTHIKEYAN S V,BRIK A. [J]. Org Lett, 2012,14(6) :1520-1523.
  • 2HAK,CHAHARM,MONBALIUJ CM,et al. [-J].J OrgChem,2012,77(6):2637-2648.
  • 3KUMAR K S A,BAVIKAR S N,SPASSER L,et al. [J]. Angew Chem Int Ed,2011,50(27).. 6137-6141.
  • 4VANA J, SEDLAK M, PADELKOVA Z. [J] Tetrahedron, 2012,68 (47) : 9808-9817.
  • 5MARTINRB, HEDRICK R I. [J].J AmChemSoc,1962,84(1):106-110.
  • 6HISKEYR,MIZOGUCHIT,INUTIT. [J]. J OrgChem,1966,31(4):1192-1195.
  • 7MONBALIU J C M, DIVE G, STEVENS C V, KATRITZKY A R. [J]. J Chem Theory and Computation, 2013,9 (2):927 934.
  • 8PASCALR, [J]. J PhysOrgChem,2002,15(8):566-569.
  • 9BRUICE T C,PRATT R F. [J]. Biochemistry, 1971,10(17) : 3178-3185.
  • 10VANAJ,SEDLAK M,HANUSEKJ. [J]. J OrgChem,2010,75(ll): 3729-3736.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部