期刊文献+

基于多核粒化的模糊粗糙计算模型 被引量:1

Fuzzy Rough Set Model Based on Multi-Kernelized Granulation
下载PDF
导出
摘要 传统的单核粒化粗糙集模型没有考虑不同粒化关系的相互影响。为解决这一问题,提出了基于多核粒化的模糊粗糙计算模型。以一族核关系构成的多粒度空间为研究对象,将乐观和悲观粗糙集模型拓展到多核空间,定义了基于S-T算子的多核下、上近似算子。给出了基于多核粒化粗糙逼近的属性选择算法。实验结果验证了不同核粒化关系之间"求同存异"和"求同排异"的相互作用。 The classical single kernelized rough set model ignores the interaction between different kernelized relations. In order to solve this problem, this paper is devoted to the construction of the fuzzy rough set model based on multi-kernelized granulation. In this study, the optimistic and pessimistic rough set model, which is derived from a family of the kernelized relations, is deeply explored to multi-kernelized granulation space by defining theS-T multi-kernelized lower and upper approximation operators. Finally, we apply these measures to evaluate and select features of classification problems. The experimental results verify the interaction in different granulating relations.
作者 曾凯 佘堃
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期717-723,共7页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2008AA04A107) 国家科技支撑计划基金(2009BAH46B0302)
关键词 近似算子 属性选择 模糊粗糙集 多核粒化 approximation operator feature selection fuzzy rough set multi-kernelized granulation
  • 相关文献

参考文献9

  • 1PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5): 341-355.
  • 2雷霖,代传龙,王厚军,赵旭.粗糙集-神经网络集成的WSN节点故障诊断[J].电子科技大学学报,2008,37(4):565-568. 被引量:13
  • 3张贤勇,熊方,莫智文,程伟.程度与精度的逻辑差粗糙集模型[J].电子科技大学学报,2010,39(5):783-787. 被引量:6
  • 4XU Wei-hua, SUN Wei-xin, LIU Yu-feng. Optimistic multi-granulation fuzzy rough set model based on triangular norm[C]//International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2012: 20-27.
  • 5QIAN Yu-hua, LIANG Ji-ye, YAO Yi-yu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
  • 6QIAN Yu-hua, LLANO Ji-ye, DANG Chuang-yin. Consistency measure, inclusion degree and fuzzy measure indecision tables[J]. Fuzzy Sets and Systems, 2008, 159(18): 2353-2377.
  • 7WU Wei-zhi, MI Ju-sheng, ZHANG Wen-xiu. Generalized fuzzy rough sets[J]. Information Sciences, 2003(151): 263-282.
  • 8HU Qing-hna, YU Da-ren, CHEN De-gang. Kemelizcd fuzzy rough sets and their applications[j]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(11): 1649-1667.
  • 9MOSER B. On the T-transitivity of kernels[j]. Fuzzy Sets and Systems, 2006, 157(13): 1787-1796.

二级参考文献14

  • 1张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:44
  • 2舒兰,赵磊.粗糙集的模糊性[J].电子科技大学学报,2005,34(1):124-126. 被引量:3
  • 3张贤勇,莫智文.Product Approximation of Grade and Precision[J].Journal of Electronic Science and Technology of China,2005,3(3):276-279. 被引量:6
  • 4HAGAN T M DEMUTH B H BEALE H M著 戴葵等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 5张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2005.
  • 6CHESSA S, SANTI P. Crash faults identification in wireless sensor networks[J]. Computer Communications 2002, 25(14): 1273-1282.
  • 7AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 8ASADA G, DONG M, LINT S, et al. Wireless integrated network sensors (WINS) for tactical information systems [C]//Proceedings of the 1998 European Solid State Circuits Conference. New York: ACM Press, 1998:15-20.
  • 9NOURY N, HERVE T, RIALE V, et al. Monitoring behavior in home using a smart fail sensor[C]//IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Lyon: IEEE Computer Society, 2000 607-610.
  • 10PAWLAK Z. Rough sets[J]. Intemational Journal of Computer and Information Science, 1982, 11: 341-355.

共引文献17

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部