期刊文献+

基于改进目标检测能量项的联合语义分割和目标检测(英文)

Joint Semantic Segmentation and Object Detection with Improved Detector Potentials
下载PDF
导出
摘要 提出了一种新颖的高阶CRF模型,能够同时获得语义分割和目标检测结果。该高阶CRF模型由低阶能量项和改进目标检测能量项构成。该模型采用了一二阶合并方法和逻辑斯蒂回归,从而降低了由于初始检测不准确而导致的错误识别率。在MSRC 21和PASCAL VOC 2007两组数据库上进行的实验表明,该方法显著优于传统方法。 Computer vision algorithms for individual tasks such as object recognition, detection and segmentation have shown impressive results in the recent years. The next challenge is to integrate all these algorithms and address the problem of scene understanding. A new higher order conditional random field (CRF) model is proposed to get semantic segmentation and object detection simultaneously. Specifically, the proposed higher order CRF model consists of low-order potentials and improved detector potentials. To avoid wrong recognition caused by the confidence given by the initial detector, the first-and-second-order pooling and logistic regression are adopted to improve the detector potential. Experimental results show that the proposed model achieves significant improvement over the baseline methods on MSRC 21-class and PASCAL VOC 2007 datasets.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期748-753,共6页 Journal of University of Electronic Science and Technology of China
关键词 目标检测能量项 一二阶合并 高阶CRF模型 语义分割 detector potential first-and-second-order pooling higher-order CRF model segmentation
  • 相关文献

参考文献18

  • 1BARROW H G, TENENBAUM J M. Computational vision[J]. Proceedings of the IEEE, 1981, 69(5): 572-595.
  • 2SHOTTON J, WINN J, ROTHER C, et al. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context[J]. International Journal of Computer Vision, 2009, 81(1): 2-23.
  • 3LADICK L. Global structured models towards scene understanding[D]. Oxford, England: Oxford Brookes University, 2011.
  • 4GOULD S. Multiclass pixel labeling with non-local matching constraints[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, United states: IEEE, 2012: 2783-2790.
  • 5LADICKY L, STURGESS P, ALAHARI K, et al. What, where and how many'? combining object detectors and CRFs[C]//Proceedings of the 1 lth European Conference on Computer Vision. Heraldion, Crete, Greece: [s.n.], 2010: 424-437.
  • 6FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 7LAD'ICKY L U, RUSSELL C, KOHLI P, et al. Associative hierarchical CRFs for object class image segmentation[C]// Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 739-746.
  • 8LARLUS D, JURIE F. Combining appearance models and Markov random fields for category level object segmentation[C]//Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, United states: IEEE, 2008.
  • 9GU C, LIM J J, ARBELAEZ P, et al. Recognition using regions[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, FL, United states: IEEE, 2009: 1030-1037.
  • 10VAN DE SANDE K, GEVERS T, SNOEK C. Evaluating color descriptors for object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1582-1596.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部