期刊文献+

基于非参数假设检验的拓扑推断算法 被引量:2

Topology Inference Algorithm Based on Nonparametric Hypothesis Test
下载PDF
导出
摘要 针对基于门限比较的二叉树修剪拓扑推断算法稳健性差的问题,提出了一种基于非参数假设检验的网络拓扑推断算法。该算法首先应用经典的二叉树拓扑推断算法获得树状网络的二叉树结构,然后应用维尔科克森秩和检验算法逐个判断二叉树中的每条内部链路是否需要修剪,最后修剪二叉树,删除所有需要修剪的内部链路,得到真实的树状拓扑。由于该算法使用统计检测的方法,无需设置门限,相对门限比较法具有更好的稳健性。仿真实验表明,该算法相比基于门限的二叉树修剪算法具有更高的推断精度。 In order to improve the robustness of binary tree pruning based topology inference algorithm, a topology inference algorithm based on nonparametric hypothesis test is proposed. In this method, the binary tree is obtained by using classical binary tree inference algorithm; wilcoxon rank sum test method is applied to test which internal nodes should be removed; and finally all the internal nodes which should be removed are deleted to generate the real topology. Simulation results show that the algorithm can get higher topology inference accuracy than the method based on threshold comparison.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期764-768,共5页 Journal of University of Electronic Science and Technology of China
基金 国家科技支撑计划(2011BAH24B04) 中国博士后科学基金(20110490989)
关键词 二叉树修剪 网络层析成像 拓扑推断 维尔科克森秩和检验 binary tree pruning network tomography topology inference wilcoxon rank sum test
  • 相关文献

参考文献11

  • 1XIAN Z, CHRIS P. A survey on selective routing topology inference through active probing[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4): 1129-1141.
  • 2赵洪华,陈鸣.基于网络层析成像技术的拓扑推断[J].软件学报,2010,21(1):133-146. 被引量:25
  • 3赵洪华,丁科,陈鸣,张婷婷,金凤林,贺汛.采用单测量源的拓扑推断算法[J].电子科技大学学报,2010,39(2):275-278. 被引量:3
  • 4DUFFIELD N, PRESTI F L. Network tomography from measured end=to-end delay covariance[J]. IEEE/ACM Transaction on Networking, 2004, 12(6): 978-992.
  • 5CASTRO R, COATES M, NOWAK R. Likelihood based hierarchical clustering[J]. IEEE Trans Signal Processing, 2004, 52(8): 2308-2321.
  • 6NI J, XIE H, TATIKONDA S, et al. Efficient and dynamic routing topology inference from end=to-end measurements[J]. IEEE/ACM Transactions on Networking, 2010, 18(1): 123-135.
  • 7ERIKSSON B, DASARATHY BARFORD P. Efficient network tomography for intemet topology discovery[J]. IEEE/ACM Transactions on Networking, 2012, 20(3): 931-943.
  • 8FEI G HU C Improving maximum=likelihood-based topology inference by sequentially inserting leaf nodes[J]. IET Commun, 2011, 5(15): 2221-2230.
  • 9SHIH M, HERO A. Hierarchical inference of unicast network topologies based on end to end measurements[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1708-1718.
  • 10RONALD E, RAYMOND H, SHARON L. Probability and statistics for engineers and scientists[M]. 8th ed. New Jersey: Pearson Education Inc, 2007.

二级参考文献14

  • 1李勇军,蔡皖东,王伟,田广利.基于端到端链路利用的网络拓扑发现算法研究[J].系统仿真学报,2006,18(z2):837-840. 被引量:6
  • 2CASTRO R, COATES M, NOWAK R, et al.Internet tomography[J]. IEEE Signal Process Mag, 2002,19(3): 47-65.
  • 3CASTRO R, COATES M, LIANG G, et al. Network tomography: Recent developments[J]. Statistical Science, 2004, 19(3): 499-517.
  • 4RATNASAMY S, MCCANNE S. Inference of multicast routing trees and bottleneck bandwidths using end-to-end measurements[C]//IEEE INFOCOM. New York: [s.n.], 1999: 353-360.
  • 5DUFFIELD N, PRESTI L, PAXSON V, et al, Network losstomography using striped unicast probes[J]. IEEE/ACM Transactions on Networking, 2006, 14(4): 697-710.
  • 6MENG S, ALFRED O. Unicast-based inference of network link delay distributions with finite mixture models[J]. IEEE Trans on Signal Processing, 2003, 51:2219-2228.
  • 7MENG S, ALFRED O. Topology discovery on unicast networks: A hierarchical approach based on end-to-end measurements[EB/OL]. [2008-05-18]. Http://www.eecs. umich.edu/msim/Publications/csp1-357.ps.pdf, 2005.
  • 8MENG S, ALFRED O. Hierarchical inference of unicast network topologies based on end-to-end measurements[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1708-1718.
  • 9CASTRO R, COATES M, NOWAK R. Likelihood based hierarchical clustering[J]. IEEE Trans on Signal Processing, 2004, 52(8): 2308-2321.
  • 10DUFFIELD N, HOROWITZ J, PRESTI F, et al. Multicast topology inference from end-to-end measurements[C]//ITC Seminar on IP traffic, Measurement and Modeling. Monterey, CA: [s.n.], 2000.

共引文献24

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部