期刊文献+

液压驱动六足机器人步行腿节段长度比例研究 被引量:11

On the Segment Length Ratio of the Walking Leg of a Hydraulically Actuated Hexapod Robot
原文传递
导出
摘要 针对液压驱动六足机器人三节段步行腿,建立了运动学模型,规划了足端运动轨迹,分析了腿长比例对步行速度、关节速度和加速度、足端工作空间及机体灵活度的影响.发现基节比例在0-0.1之间、大腿比例在0.4-0.5之间时,各项指标处于合理范围.根据0.09:0.455:0.455的腿长比例建立了腿部实物模型,搭建了腿部性能测试系统.试验结果表明,关节运动过程中未到达液压缸极限位置且无死点;关节最大速度与加速度满足性能需求;各关节最大速度复现偏差小于0.2°/s,最大加速度复现偏差小于0.7°/s2.验证了腿部节段长度分析结果的合理性与可行性. For a hydraulically actuated hexapod robot, a kinematic model of the walking leg with three segments is es- tablished. The trajectory of foot is planned, and the influence of leg length ratio on walking speed, joint angular velocity and acceleration, workspace of foot and body flexibility is analyzed. The indexes are reasonable when coxa proportion is between 0-0.1 and thigh proportion is between 0.4-0.5. The physical model of leg is established according to the segment length ratio 0.09 : 0.455 : 0.455, and the performance testing system of leg is developed. Experimental results show that there is no extreme position of hydraulic cylinder and dead point in the process of joint movement. The maximum speed and the maximum acceleration of joints can satisfy the performance requirements. Repetition deviation of the maximum speed of joints is less than 0.2°/s, and the repetition deviation of the maximum acceleration is less than 0.7° /s2. The rationality and feasibility of the analysis results of segment length are verified.
出处 《机器人》 EI CSCD 北大核心 2014年第5期544-551,共8页 Robot
基金 国家自然科学基金资助项目(51275106) 国家973计划资助项目(2013CB035502) 高等学校学科创新引智计划资助项目(B07018) 教育部新世纪优秀人才支持计划资助项目(NCET-10-0055)
关键词 六足机器人 腿长比例 步行速度 关节转速 灵活性 hexapod robot leg length ratio walking speed joint angular velocity flexibility
  • 相关文献

参考文献12

  • 1Wilcox B H, Litwin T, Biesiadecki J, et al. ATHLETE: A car- go handling and manipulation robot for the moon[J]. Journal of Field Robotics, 2007, 24(5): 421-434.
  • 2Irawan A, Nonami K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on un- even and extremely soft terrain[J]. Journal of Field Robotics, 2011, 28(5): 690-713.
  • 3Gonzalez de Santos P, Garcia E, Ponticelli R, et al. Minimizing energy consumption in hexapod robots[J]. Advanced Robotics, 2009, 23(6): 681-704.
  • 4Estremera J, Cobano J A, Gonzalez de Santos E Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: An application to humanitarian demining[J]. Robotics and Autonomous Systems, 2010, 58(5): 700-711.
  • 5Semini C, Tsagarakis N G, Guglielmino E. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Jour- nal of Systems and Control Engineering, 2011, 225(I6): 831- 849.
  • 6Semini C, Tsagarakis N G, Guglielmino E, et al. Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 3640-3645.
  • 7Hodoshima R, Doi T, Fukuda Y, et al. Development of a quadruped walking robot TITAN XI for steep slope opera- tion[J]. Journal of Robotics and Mechatronics, 2007, 19(1): 13- 26.
  • 8Roy S S, Prafihar D K. Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 400-416.
  • 9Delcomyn F, Nelson M E. Architectures for a biomimetic hexapod robot[J]. Robotics and Autonomous Systems, 2000, 30(1/2): 5-15.
  • 10张建斌,宋荣贵,陈伟海,张广萍.基于运动灵活性的蟑螂机器人机构参数优化[J].北京航空航天大学学报,2010,36(5):513-517. 被引量:7

二级参考文献25

  • 1唐粲,超贠,栾胜.一种新型医疗机器人运动学及灵活性分析[J].北京航空航天大学学报,2005,31(7):748-752. 被引量:16
  • 2韩宝玲,王秋丽,罗庆生.六足仿生步行机器人足端工作空间和灵活度研究[J].机械设计与研究,2006,22(4):10-12. 被引量:22
  • 3Bai Shaoping,Low K H,Guo Weimiao.Kinematographic experi-ments on leg movements and body trajectories of cockroach walk-ing on diffent terrain[C] //Proc of IEEE Inter Conf on Robotics and Automation.San Francisco:IEEE,2000:2605-2610.
  • 4Chen Weihai,Yang Guilin,Ho E H L,et al.Interactive motion control of modular reconfigurable manipulators[C] //Inter Conf on Intelligent Robots and Systems.Las Vegas:IEEE,2003:1620-1625.
  • 5Gosselin C M,Angeles J.The optimum kinematic design of a pla-nat 3-DOF parallel manipulators[J].ASME Journal of Mechani-cal Design,1998,110(1):35-40.
  • 6Gosselin C M,Angeles J.A global performance index for the ki-nematic optimization of robotic manipulators[J].ASME Journal of Mechanical Design,1991,113(3):220-226.
  • 7Kumar V.Characterization of workspaces of parallel manipulatom[J].ASME Journal of Mechanical Design,1992,114(3):368-375.
  • 8Xu Qingsong,Li Yangmin.Kinematic analysis and optimization of a new compliant parallel Micromanipulator[J].Inter Journal of Advanced Robotic Systems,2006,3(4):351-358.
  • 9Kircanski M.Kinematic isotropy and optimal kinematic design of planar manipulators and a 3-DOF spatial manipulator[J].International Journal of Robotic Research,1996,15(1):61-77.
  • 10Espenschied K S,Quinn R D,Chiel H J.Biologicallybased distributed control and local reflexes improve rough terrain locomotion in a hexapod robot[J].Robotics and Autonomous Systems,1996,18 (6):59-64.

共引文献15

同被引文献74

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部