期刊文献+

压缩感知技术研究及应用 被引量:2

Analysis of Theory and Technology Application of Compressive Sensing
下载PDF
导出
摘要 随着信息需求的提高,在超宽带信号处理领域中,奈奎斯特(Nyquist)采样所需硬件成本昂贵、采样获取效率低,且对数据存储先提取后压缩再传输,造成大量资源浪费。压缩感知(Compressive Sensing,CS)把采样和压缩放在一起进行,若信号在某个域上是稀疏的、压缩的,就可以低于奈奎斯特采样频率进行采样。对n维的离散信号取其中少数一些值处理,在接收端采用一些算法进行恢复。本文引入了压缩感知技术以降低系统对采样速率的要求,基于CS理论,介绍了CS三个关键技术:信号稀疏表示、测量矩阵设计、压缩感知重构算法,以及CS技术在具体领域中的应用。 With the information demand increasing, the method which based on Nyquist sampling is expensive and low efficiency in ultra wideband signal processing field. To extract before transmission data storage can cause a lot of waste resources. Compressive Sensing can make sampling and compression at the same time. The sampling frequency is far less than the Nyquist sampling frequency as long as the signal is sparse in a domain. It can deal with discrete signal directly and take a few values for processing from n dimension discrete signal. Some algorithm is used to recover on the receiving - end. A compressive sensing method is proposed in this paper to reduce the requirement of the system in sampling rate. Firstly, the CS basic theory is introduced and three key technologies are summarized : the design of the measurement matrix, com- pressive sensing reconstruction algorithm and sparse representation of signals. Then the application of compressive sensing technology in specific areas is introduced.
作者 蒋金 陈长兴
机构地区 空军工程大学
出处 《工具技术》 2014年第10期79-82,共4页 Tool Engineering
基金 陕西省电子信息综合集成重点实验室项目(201107Y16)
关键词 奈奎斯特采样 压缩感知 受限等距特性 稀疏表示 重构算法 Nyquist sampling compressive sensing (CS) restricted isometry property (RIP) sparse representation reconstruction algorithm
  • 相关文献

参考文献16

  • 1Donoho D. Compressed sensing [ J ]. IEEE Trans. Informa- tion Theory ,2006,52 (4) : 1289 - 1306.
  • 2Candes E. Compressive sampling [ C ] Proceedings of the In- ternational Congress of Mathematicians, Madrid, Spain, 2006 : 1433 - 1452.
  • 3Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communica- tions on Pure and Applied Mathematics ,2006,59 (8) :1207 - 1223.
  • 4Tsaig Y, Dono ho D. Extensions of compressed sensing [ J ]. Signal Processing, 2006,86 (3) : 549 - 571.
  • 5Richard Baraniuk, Mark Davenport, Ronald De Vore, et al. A simple proof of the restricted isometry property for ran- dom matrices [ J ]. Constructive Approximation, 2007,23 ( 4 -6) :918 -925.
  • 6D L Donoho, Y Tsaig. Extensions of compressed sensing[ J ]. Signal Processing,2006,86 ( 3 ) :533 - 548.
  • 7张志禹,满蔚仕,张永宁.压缩感知理论测量矩阵研究[J].工具技术,2012,46(3):70-74. 被引量:2
  • 8Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry propery for random matrices [ J ]. Constructive Approximation,2008,28 (3) :255 - 263.
  • 9吴海佳,张雄伟,陈卫卫.压缩感知新技术专题讲座(二) 第4讲 压缩感知理论中测量矩阵的构造方法[J].军事通信技术,2012,33(1):90-94. 被引量:4
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711

二级参考文献90

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献714

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部