期刊文献+

一类高阶线性微分方程亚纯解的增长性

On the growth of meromorphic solutions of a high order linear differential equation
下载PDF
导出
摘要 利用亚纯函数值分布理论,该文研究了一类高阶线性微分方程亚纯解的增长性,得到当方程系数满足某些条件时,其任意非平凡解为无穷级。推广了龙见仁等人的结果。 This paper deals with the growth of meromorphic solutions of a high order linear differential equation by using Nevanlinna theory of meromorphic functions,so-me sufficient conditions that all nontrivial solutions are of infinite order are obtained,and improves the results of Long Jian-ren.
作者 陶磊 龙见仁
出处 《贵州师范大学学报(自然科学版)》 CAS 2014年第5期85-87,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州师范学院校级科研基金(13ZC003) 贵州省科学技术厅 贵州师范大学联合科技基金(黔科合J字LKS[2012]12号) 贵州师范学院重点支持学科
关键词 线性微分方程 亚纯函数 增长级 linear differential equation meromorphic function the order of growth
  • 相关文献

参考文献6

  • 1张广厚.整函数与亚纯函数理论--亏值.渐进值和奇异方向[M].北京:科学出版社,1986.
  • 2Hayman W. Meromorphic Function [ M ]. Oxford : Claren- don Press, 1964.
  • 3龙见仁,伍鹏程.二阶线性微分方程亚纯解的增长性[J].山东大学学报(理学版),2012,47(8):31-33. 被引量:3
  • 4Gundersen G G . Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates [ J ]. J London Math Soc, 1988,37 (2) :88-104.
  • 5Bank S. A general theorem concerning the growth of solu- tions of first order algebraic differential equations [ J ]. Composition Math, 1972,25:61-70.
  • 6董红果,伍鹏程,龙见仁.某类线性微分方程解的无穷级射线[J].贵州师范大学学报(自然科学版),2013,31(2):43-45. 被引量:1

二级参考文献18

  • 1杨乐.值分布及其新研究[M].北京:中国科学出版社,1982.
  • 2HAYMAN W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964.
  • 3BANK S, LAINE I. On the oscillation theory of f^n + Af = 0 where A is entire [ J ]. Trans Amer Math Soc, 1982,273 : 351-363.
  • 4BANK S, LAINE I. On the zeros of meromorphic solutions of second order linear differential equations [ J ]. Comment Math Helv, 1983, 58:656-677.
  • 5GUNDERSEN G. Finite order solution of second order linear differential equations[J]. Trans Amer Math Soc, 1988, 305: 415-429.
  • 6FRANK G, HELLERSTEIN S. On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients[J]. Proc London Math Soc, 1986, 53 ( 3 ) :407-428.
  • 7GUNDERSEN G. Estimates for the logarithmic derivative of a meromorphic function[J]. J London Math Soc, 1988, 37:88-104.
  • 8GOLDBERG A A, SOKOLOVSKAYA O P. Some relations for meromorphic functions of order or lower order less than one[J]. Izv Vyssh Uchebn Zaved Mat, 1987, 31(6) :26-31.
  • 9BANK S. A general theorem concerning the growth of solutions of first order algebraic differential equations[J]. Composition Math, 1972, 25:61-70.
  • 10Hayman W K. Meromorpzohic functions [ M ]. Oxford : The Clarendon Press, 1964.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部