期刊文献+

人眼视觉感知驱动的梯度域低照度图像对比度增强 被引量:15

A Perception-inspired Contrast Enhancement Method for Low-light Images in Gradient Domain
下载PDF
导出
摘要 针对传统的对比度增强方法在对低照度图像进行处理时不能同时顾及压缩动态范围、调整亮度以及增强或保持细节等问题,提出一种基于人眼视觉感知特性的、从全局亮度映射到局部细节补偿的低照度图像对比度增强方法.首先通过非线性全局亮度映射模型压缩图像的动态范围,提高图像的整体亮度水平;然后结合人眼视觉系统的亮度掩蔽特性和超阈值对比度感知特性,非线性地调整图像的局部梯度场增强和恢复图像的局部细节;最后在目标梯度场上通过快速求解泊松方程获取增强后的图像.实验结果表明,该方法能够有效地增强低照度图像的全局和局部对比度,提升了低照度图像的视见度. Traditional contrast enhancement methods cannot simultaneously compress the dynamic range ,adjust the brightness and enhance or preserve the details of images on the low‐light images processing .Combining the human visual perception characteristics , a novel contrast enhancement method is proposed to enhance low‐light images via a global brightness mapping to local details compensation strategy .Firstly ,a nonlinear global brightness mapping model is employed to compress the dynamic range and adjust the overall brightness of the image .Then ,the image gradient filed is modified to enhance and restore the local details by combining the luminance masking and suprathreshold contrast perception characteristics of human visual system . Finally a new enhanced image is obtained by using a fast Poisson solver on the target gradient field .The results demonstrate that the proposed algorithm enhances both global and local contrast effectively and improves the visibility of the low‐light images .
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期1981-1988,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(41101425) 国家科技重大专项(2013ZX07503-001-06) 湖北省自然科学基金面上项目(2014CFB461) 中央高校基本科研业务费专项基金(2012619020214) 华中师范大学中央高校基本科研业务费项目(CCNU14A05017)
关键词 亮度掩蔽 超阈值对比度 亚阈值 梯度场 luminance masking suprathreshold contrast sub-threshold gradient field
  • 相关文献

参考文献20

  • 1Nercessian S C, Panetta K A, Agaian S S. Non linear direct multi scale image enhancement based on the luminance and contrast masking characteristics of the human visua] system [J]. IEIZE Transactions on Image Processing, 2013, 22(9) : 3549-3561.
  • 21.oza A, Bull D R, Hill P R, et al. Automatic contrast enhancement ot" low light images based on local statistics of wavelet coefficients [J]. Digital Signal Processing, 2013, 23 (6), 1856-1866.
  • 3禹晶,李大鹏,廖庆敏.基于颜色恒常性的低照度图像视见度增强[J].自动化学报,2011,37(8):923-931. 被引量:28
  • 4Jobson I) J, Rahman Z, Woodell G A. A multiscale Retinex for ridging the gap between color images and the human observation of scenes [J]- IEEE Transactions on Image Processing, 1997, 6(7); 965-976.
  • 5Fattal R, l.ischinski D, Werman M. Gradient domain high dynamic range compression [J]. ACM Transactions on Graphics, 2002, 21(3), 249 256.
  • 6Kundu M K, Pal S K. Thresholding for edge detection using human psyebovisual phenomena [J] Pattern Recognition Letters, 1986, 4(6) :433-441.
  • 7Mandal l), Panetta K, Agaian S. Human visual system inspired object detection and recognition [C] //Proceedings oI" the IEEE International Con{erence on Technologies for Practical Robot Applications. Piscataway, NJ IEEE Computer Society Press, 2012= 145-150.
  • 8许欣,陈强,孙怀江,夏德深.结合视觉感知特性的梯度域图像增强方法[J].计算机辅助设计与图形学学报,2009,21(1):130-135. 被引量:6
  • 9Panetta K A, Wharton E J, Agaian S S. Human visual system-based image enhancement and logarithmic contrast measure [J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2008, 38(1): 174 188.
  • 10Davis N, Pittaluga F, Panetta K. Facial recognition using human visual system algorithms [or robotic and UAV platforms [C] //Proceedings of the IEEE Conference on Technologies for Practical Robot Applications. Washington D C: IEEE Computer Society Press, 2013, Article No. 6556371.

二级参考文献64

  • 1刘国军,唐降龙,黄剑华,刘家峰.基于模糊小波的图像对比度增强算法[J].电子学报,2005,33(4):643-646. 被引量:19
  • 2M A Webster. Human colour perception and its adaptation[ J ]. Network:Computation in Neural Systems, 1996, 17 (4) : 587 - 634.
  • 3Funt B, Ciurea F, Mccann J. Retinex in MATLAB[ J]. Jourllal of Electronic Imaging, 2004,13( 1 ) :48 - 57.
  • 4Jobson DJ, Rahman Z, Woodell GA. A multiscale retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing, 1997,6(7) :965 - 976.
  • 5Kimmel R, Elad M, Shaked D. A variational framework for Retinex[J]. International Journal of Computer Vision, 2003,52 (1) :7 - 23.
  • 6Laurence Meylan, Sabine Susstrunk. High dynamic range image rendering with a retinex-based ad;aptive filter[J]. IEEE. Transactions on Image Processing,2006,15(9) :2820 - 2830.
  • 7Li Tao, Vijayan K.Asari.A Robust Image Enhancement Technique for Improving Image Visual Quality in Shadowed Scenes [ A]. Proccedings of the 4th International Conference on Image and Video Retrieval [ C ]. Springer, Berlin, ALLEMAGNE, 2005, vol. 3568,395 - 404.
  • 8Wang Shoujue, Cao Yu, Huang Yi. A novel image restoration approach based on point location in high-dimension space geometry[ A]. Proceedings of International Conference on Neural Networks and Brain ( ICNN&B ' 05 ) [ C ]. IEEE Press, 2005, vol. 1,301 - 305.
  • 9Land E H. Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image [J]. Proceedings of the National Academy of Sciencesof the United States of America, 1983, 80(16):5163-5169
  • 10Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Antonio, Texas, 2002: 249-256

共引文献91

同被引文献100

  • 1王保平,刘怀亮,李南京,谢维信.一种新的自适应图像模糊增强算法[J].西安电子科技大学学报,2005,32(2):307-313. 被引量:23
  • 2LIU Bin, JIN Weiqi, CHEN Yah, et al. Contrast Enhancement Using Non-overlapped Sub-blocks and Local Histogram Projection [J]. IEEE Transactions on Consumer Electronics, 2011, 57(2): 583-588.
  • 3Rivera A R, Ryu B, Chae O, A Content-Aware Dark Image Enhancement through Channel Division [J]. IEEE Transactions on Image ProCessing, 2012, 21(9): 3967-3980.
  • 4Huang SC, Cheng F C, ChiuY S. Efficient Contrast Enhancement Using Adaptive Gamma Correction with Weighting Distribution [J]. IEEE Transactions on Image Processing; 2013, 22(3): 1032-1041.
  • 5丁一淼.基于亮度通道假设的低照度图像处理算法及其实时处理系统实现[D].厦门:厦门大学,2012.
  • 6Agaian S,Roopaei M.New Haze Removal Scheme and Novel Measure of Enhancement[C]//Proceedings of2013 IEEE International Conference on Cybernetics.Washington D.C.,USA:IEEE Computer Society,2013:219-224.
  • 7He Kaiming,Sun Jian,Tang Xiaoou.Single Image Haze Removal Using Dark Channel Prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353.
  • 8Fattal R.Single Image Dehazing[J].ACM Transactions on Graphics,2008,27(3):1-9.
  • 9Dong Xuan,Wang Guan,Pang Yi,et al.Fast Efficient Algorithm for Enhancement of Low Lighting Video[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C.,USA:IEEE Computer Society,2011:1-6.
  • 10许宗惠,赫葆源.明视觉和暗视觉光效率函数的几个问题[C]//全国第五届心理学学术会议文摘选集.北京:中国心理学会,1984:207-209.

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部