期刊文献+

基于独立组件的模糊人脸图像鉴别 被引量:4

Independent Components Based Blur Face Identification
下载PDF
导出
摘要 针对图像模糊会影响人脸图像识别精度的问题,首先指出了在摄取用于识别的人脸图像时加入模糊鉴别步骤的必要性,进而提出了基于独立面部组件进行模糊人脸图像鉴别的方法.由于进行模糊鉴别必须依赖图像中的高频细节信息,而人脸图像上绝大多数高频信息都集中在眼睛、眉毛、嘴巴等具体面部组件上,因此选择以这些面部组件为基本特征提取单位,以降低面颊、额头等主要包含低频平滑信息的面部其他区域对模糊鉴别精度的影响.该方法采用面部组件上的高频DCT系数为特征;随后为各组件构建独立的随机森林分类器,并分别判断每个面部组件其是否模糊;最后基于各组件的鉴别结果进行投票,得出最终模糊鉴别结果.在FRGC公开数据集上进行大量对比实验的结果表明,独立面部组件特征是有效的,并充分验证了文中方法的实际效果. To deal with the image blur problem during face recognition ,in this paper ,the necessity to add a blur identification step ahead of facial image acquiring for recognition is first discussed ,and then a components based blur identification approach is proposed .The most significant characteristics for blur identification reside in the high frequency informations of image ,and as to a specific facial image , those informations mainly distribute on face components such as eyes ,brow ,mouth ,and so on .T hus we explore to extract features from these face components to exclude the disturbance of other face parts such as cheek and forehead w hose dominant informations are contained in low frequency .Specifically , our algorithm relies on the high frequency DCT coefficients on face component as features ,then the Random Forest strategy is utilized as the component level identifier to blur ,and finally component voting in enrolled to determine the final decision .The effectiveness of the proposed component features and our independent components based blur face identification approach are demonstrated by tremendous experiments on the publicly available FRGC dataset .
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期1997-2006,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61302127 11326198 61173032 61105023 11326211) 天津市高等学校科技发展基金计划项目(20120805)
关键词 模糊人脸鉴别 人脸独立组件 人脸识别 组件投票 blur face identification independent face component face recognition component voting
  • 相关文献

参考文献29

  • 1Li S Z, Jain A K. Handbook of face recognition [M]. 2nd ed. Heidelberg: Springer, 2011.
  • 2Abate A F, Nappi M, Riccio D, et al. 2D and 3D face recognition: a survey [J]. Pattern Recognition Letters, 2007, 28(14) : 1885-1906.
  • 3Tan X Y, Chen S C, Zhou Z H, etal. Face recognition from a single image per person: a survey [J]. Pattern Recognition, 2006, 39(9): 1725-1745.
  • 4李月龙,封举富.基于最小扭曲变换的正面人脸图像合成[J].计算机辅助设计与图形学学报,2011,23(6):1085-1090. 被引量:8
  • 5李月龙,孟丽,封举富,武继刚.基于光照补偿空间的鲁棒人脸识别[J].中国科学:信息科学,2013,43(11):1398-1409. 被引量:4
  • 6Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005, 1:947-954.
  • 7Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10) : 1090-1104.
  • 8Li Y L, Feng J F. Frontal face synthesizing according to multiple non-frontal inputs and its application in face recognition [J]. Neurocomputing, 2012, 91:77-85.
  • 9Li Y L, Meng L, Feng J F. Face illumination compensation dictionary [J]. Nenrocomputing, 2013, 101:139-148.
  • 10ISO/IEC 19794-5 : 2011 Information technology--Biometric data interchange formats--Part 5: Face image data[S].

二级参考文献34

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys, 2003, 35 (4): 399-458.
  • 2Dryden I L, Mardia K V. Statistical shape analysis [M]. Chiehester: John Wiley, 1998.
  • 3Schaefer S, McPhail T, Warren J. Image deformation using moving least squares [J]. ACM Transactions on Graphics, 2006, 25(3): 533-540.
  • 4Choudhury T, Clarkson B, Jebara T, et al. Multimodal person recognition using unconstrained audio and video [C] // Proceedings of the International Conference on Audio-and Video-Based Person Authentication. Tokyo: Springer, 1999: 176-181.
  • 5Blanz V, Grother P, Phillips P J, et al. Face recognition based on frontal views generated from non-frontal images [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005, 2:454-461.
  • 6Gonzalez-Jimenez D, Alba-CastroJ. Symmetry-aided frontal view synthesis for pose-robust face recognition [C] // Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Los Alamitos: IEEE Computer Society Press, 2007:II-237-II-240.
  • 7Asthana A, Sanderson C, Gedeon T, et al. Learning-based face synthesis for pose-robust recognition from single image [C] //Proceedings of the British Machine Vision Conference. Sheffield: British Machine Vision Association and Society for Pattern Recognition, 2009:1-10.
  • 8Zhou Y, Gu L, Zhang H J. Bayesian tangent shape model: estimating shape and pose parameters via Bayesian inference [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2003, 1:I-109-I-116.
  • 9Viola P, Jones M J. Robust real-time face detection [J]. International Journal of Computer Vision, 2004, 57(2) : 137- 154.
  • 10Kent J T, Mardia K V. The link between Kriging and thin-plates splines [M] //Kelly F P. Probability, Statistics and Optimization.- A Tribute to Peter Whittle. Chichester: Wiley, 1994:325-339.

共引文献9

同被引文献20

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部