期刊文献+

融合NSCT和自适应平滑的光照不变量提取算法

Extraction of Illumination Invariants Using NSCT and Adaptive Smoothing
下载PDF
导出
摘要 为了更好地解决光照变化对人脸识别系统的干扰问题,提出一种融合了NSCT和自适应平滑的算法,以提取带有更多人脸结构信息的光照不变量.首先用NSCT分解对数域人脸图像,并对各高频子带进行NormalShrink阈值滤波;再将滤波后的高频子带和未经处理的低频子带进行逆NSCT处理得到人脸图像的模糊图像;然后对NSCT分解后的低频子带使用自适应平滑提取出低频子带中的人脸细节信息;最后结合该人脸细节信息和模糊图像进行计算,得到人脸图像的光照不变量.该不变量有效地弥补了NSCT方法中缺乏低频子带中的人脸细节信息的不足,提高了人脸信息的利用率.在Yale B和CMU PIE人脸库上的实验结果表明,该算法能够有效地消除光照变化的影响,具有更优的人脸识别性能,提高人脸识别系统的光照鲁棒性. To better handle light changes in face recognition ,a method combining NSCT and adaptive smoothing is proposed ,to extract illumination invariants with more structural information of faces . T he method first decomposes a face image in the logarithmic domain , then applies NormalShrink filtering to each high‐frequency subband .Next ,a blurred face image is obtained by performing inverse NSCT on the filtered high‐frequency and original low‐frequency subbands . After that , adaptive smoothing is used to extract detailed facial information from the original low‐frequency subbands . Finally ,a facial illumination invariant is estimated by combining the detailed facial information and the blurred face image .T he resulting illumination invariant has more detailed facial information in the low‐frequency subbands ,compared with results from NSCT . The proposed method better exploits the structural information of faces .Experiments on Yale B and CM U PIE face databases show that the method effectively eliminates illumination variations ,has better performance compared with existing methods ,and improves the robustness of face recognition systems .
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期2070-2078,共9页 Journal of Computer-Aided Design & Computer Graphics
关键词 人脸识别 光照不变量 非下采样轮廓波变换 自适应平滑 face recognition illumination invariant nonsubsampled contourlet transform adaptive smoothing
  • 相关文献

参考文献22

  • 1Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex [J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
  • 2Jobson D J, Rahman Z, Woodell G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes l-J/. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
  • 3Gross R, Braiovic V. An image preproeessing algorithm for illumination invariant face recognition [M] /]Lecture Notes in Computer Science. Heidelberg: Springer, 2003, 2688:10-18.
  • 4Shashua A, Riklin-Raviv T. The quotient image class-based re-rendering and recognition with varying illuminations l-J/. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 129-139.
  • 5Wang H T, Li S Z, Wang Y S. Face recognition under varying lighting conditions using self quotient image [C] / Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. Los Alamitos IEEE Computer Society Press, 2004: 819-824.
  • 6Chen T, Yin W T, Zhou X S, et al. Total variation models for variable lighting face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1519-1524.
  • 7Zhang T P, Fang B, Yuan Y, et al. Multiscale facial structure representation for face recognition under varying illumination [J]. Pattern Recognition, 2009, 42(2): 251-258.
  • 8Goh Y Z, Teoh A B J, Goh K O M. Wavelet-based illumination invariant preprocessing in face recognition [J]. Journal of Electronic Imaging, 2009, 18 (2): Article No. 023001.
  • 9Cheng Y, Hou Y K, Zhao C X, etal. Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain [J]. Neurocomputing, 2010, 73(10-12): 2217-2224.
  • 10Xie X H, Lai J H, Zheng W S. Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform [J]. Pattern Recognition, 2010, 43(12): 4177-4189.

二级参考文献19

  • 1王彦臣,李树杰,黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学精密工程,2006,14(1):70-76. 被引量:47
  • 2RAVI R.Analytic pca construction for theoretical analysis of lighting variability in images of a lambertian object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(10):1322-1333.
  • 3RONEN BRASRI,DAVID JACOBS.Lambertian reflectance and linear subspaces[C].NEC Research Institute Technical Report.2002.
  • 4ATHINODOROS S,PETER N.Illumination cone models for recognition under variable lighting:faces[C].IEEE Conf.on CVPR,1998:52-59.
  • 5GEORGHIADES A S,BELHUMEUR P N,KRIEGMAN D J.From few to many:illumination cone models for facerecognition under differing pose and lighting[J].IEEE Trans.On PAMI,2001,23(6):643-660.
  • 6SHAN S,GAO W,CAO B,et al..Illumination normalization for robust face recognition against varying lighting conditions[C].Procedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures,2003:157-164.
  • 7XIE X D,LAM K M.Face recognition under varing illumination based on a 2D face shape model[J].Pattern Recognition,2005,38(2):221-230.
  • 8GAO Y,LEUNG M K H.Face recognition using line edge map[J].IEEE Trans.On PAMI,2002,24(6):764-779.
  • 9LIU D H,LAM K M,SHEN L S.Illumination invariant face recognition[J].Pattern Recognition,2005,38:1705-1716.
  • 10YOUNG K P,SEOK L P,JOONG K K.Retinex method based on adaptive smoothing for illumination invariant face recognition[J].Signal Processing,2008,88:1929-1945.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部