期刊文献+

大电路固定极性Reed-Muller逻辑快速转换算法 被引量:3

A Fast Reed-Muller Fixed Polarity Conversion Algorithm for Large Circuits
下载PDF
导出
摘要 针对已有的列表技术在极性转换中只能解决中小规模电路的问题,提出一种基于不相交乘积项列表技术的快速转换算法.首先将待处理的逻辑函数表示为不相交乘积项之和形式;然后通过对已有的基于最大项的列表技术进行分析和改进,使得改进后的列表技术可以实现将逻辑函数从不相交乘积项的AND?OR形式向固定极性XNOR?OR形式的Reed-Muller逻辑转化.文中算法用C编程实现,并用MCNC标准电路进行测试.实验结果表明,该算法可以快速实现大电路的极性转换,并且具有运算速度对电路的输入变量数不敏感的特点. To cope with the problem that the existing tabular techniques based algorithms are unable to deal with large circuits in the polarity conversion ,a fast conversion algorithm based on disjointed products is proposed . First the logic function is expressed as the form of the sum of disjointed products . T hen by analyzing and improving the existing tabular techniques used for Reed‐M uller functions polarity conversion based on maxterms ,the proposed technique can convert the logic function from the form of sum of disjointed products into the XNOR/OR form with the fixed polarity directly . The proposed algorithm is implemented in C and tested under MCNC benchmarks .The experimental results show that ,the proposed algorithm can carry out the polarity conversion fast for large circuits , and the conversion speed is less effect with the number of circuit inputs .
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期2091-2098,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目(61131001) 国家自然科学基金(61228105 61471211) 宁波市自然科学基金(2013A610009)
关键词 Reed-Muller逻辑 固定极性 极性转换 不相交乘积项 逻辑综合 Reed-M uller logic fixed polarity polarity conversion disjointed products logic synthesis
  • 相关文献

参考文献5

二级参考文献54

  • 1万旭,唐金花,陈偕雄.基于K图的逻辑函数OC展开式在固定极性下的化简[J].浙江大学学报(理学版),2006,33(1):48-51. 被引量:3
  • 2Wang Pengjun,Chen Xiexiong.TABULAR TECHNIQUES FOR OR-COINCIDENCE LOGIC[J].Journal of Electronics(China),2006,23(2):269-273. 被引量:12
  • 3Sasao T. Easily testable realizations for generalized Reed Muller expressions [J]. IEEE Transactions on Computers, 1997, 46(6); 709-716.
  • 4Dill K M, Perkowski M A. Baldwinian learning utilizing genetic and heuristic algorithms for logic synthesis andminimization of incompletely specified data with generalized Reed-Muller (AND-EXOR) forms [J]. Journal of Systems Arehiteeture, 2001, 47(6): 477-489.
  • 5Habib M K. A new approach to generate fixed-polarity Reed-Muller expansions for completely and incompletelyspecified functions [J]. International Journal of Electronics, 2002, 89(11): 845-876.
  • 6Voudouris D, Sampson M, Papakonstantinou G. Exact ESCT minimization for functions of up to six input variables [J]. Integration, the VLSI Journal, 2008, 41(1) : 87-105.
  • 7Habib M K. Efficient and fast algorithm to generate minimal Reed-Muller exclusive-OR expansions with mixed polarity forcompletely and incompletely specified functions and its computer implementation [J]. Computers &Electrical Engineering, 1993, 19(3):193-211.
  • 8Becker B, Drechsler R. Exact minimisation of Kronecker expressions for symmetric function [J]. Computers and Digital Techniques, 1996, 143(6): 349-354.
  • 9Cheng J, Chen X, Faraj K M, et al. Expansion of logical function in the OR-coincidence system and the transformbetween it and maxterm expansion [J]. lEE Proceedings Computers and Digital Techniques, 2003, 150(6): 397-402.
  • 10Yang M, Xu H, Wang L, et al. Exact minimization of large fixed polarity dual form of Reedd-Muller functions [C] // Proceeding of the 8th International Conference on Solid-State and Integrated Circuit Technology. Piscataway: IEEE Computer Society Press, 2006:1931-1933.

共引文献37

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部