期刊文献+

基于DIEOF方法重构海表叶绿素a遥感缺失数据 被引量:3

Reconstruction of missing remote sensing data of sea surface chlorophyll-a using DIEOF
下载PDF
导出
摘要 以2007年1月到2010年12月的MODIS Aqua CHL-a Level 2海表水色产品为基础数据,获得南海北部海域海表叶绿素a浓度的月平均影像集,基于影像集数据的时空相关性利用DIEOF(Data Interpolating Empirical Orthogonal Functions)方法重构其缺失数据。通过分析重构前后数据变化、验证重构结果的时空特征、计算模型精度指标等对重构结果进行评价。研究结果表明:DIEOF方法重构的MODIS海表叶绿素a影像,能够体现研究区海表叶绿素a的时空变化特征,重构结果的复相关系数R2可达到0.98,平均绝对误差MAE小于0.01;该方法重构过程中无需先验信息,易操作,能够有效重构大面积成片缺失或缺失比例较高的影像。 The monthly mean images of surface chlorophyll-a concentration in the Northern South China Sea(NSCS)were derived from the data preprocessing of the MODIS chlorophyll a(CHL-a) concentration Level 2 products(from January 2007 to December 2010). And then not only does the study implement the reconstruction of missing data in the monthly mean CHL-a image using Data Interpolating Empirical Orthogonal Functions(DIEOF), based on space-time correlation of data, but also evaluate the reconstructed result by analyzing the difference between data before and after the reconstruction, verifying the temporal and spatial variability, and calculating the precision index. The study shows that the complete MODIS CHL-a images, which are reconstructed using DIEOF, characterize the temporal and spatial variability of CHL-a in NSCS. The multiple correlation coefficient of the reconstruction result is 0.98, and the mean absolute error is less than 0.01. As it allows the calculation of missing data without requiring a prior knowledge about the error covariance structure, the DIEOF can be also successfully applied to the reconstruction of missing data in a large area or in a high proportion.
出处 《海洋通报》 CAS CSCD 北大核心 2014年第5期576-583,共8页 Marine Science Bulletin
基金 国家自然科学基金(U0933005) 中央高校基本科研业务费专项(2012014)
关键词 缺失数据重构 DIEOF 南海北部海域 叶绿素A MODIS Reconstruction of Missing Data DIEOF Northern South China Sea Chlorophyll a MODIS
  • 相关文献

参考文献20

  • 1Alvera- Azcatrate A, Barth A, Rixen M, et al, 2005. Reconstruction of in- complete oceanographic data sets using empirical orthogonal func- tions: application to the Adriatic Sea surface temperature. Ocean Modelling, 9 (4) :325-346.
  • 2Alvera-Azcarate A, Barth A, Beckers J M, et al, 2007.Multivariate recon- struction of missing data in sea surface temperature, CHLorophyll, and wind satellite fields. Journal of Geophysical Research-Oceans, 112, C03008, doi: 10.1029/2006JC003660.
  • 3Beckers J M, Rixen M, 2003. EOF calculations and data filling from in- complete oceanographic datasets. Journal of Atmospheric and O-ceanic Technology, 20 (12) :1839-1856.
  • 4Casey B, Arnone R, Flynn P, 2007.Simple and efficient technique for spa- tial/temporal composite imagery. Proceedings of SPIE, Conference on Coastal Ocean Remote Sensing,v6680,San Diego,CA,USA,26- 30,August 2007. Muller D, 2007.
  • 5Estimation of algae concentration in cloud covered scenes using geostatistical methods.Proceedings of ENVISAT Symposium, Montreux, Switzerland, 23-27, ESA Special Publication SP-636.
  • 6Shaw P D, Chao S Y, Liu K K, et al, 1996. Winter upwelling off Luzon in the northern South China Sea. J Geophys Res,101 (C7) :16435 - 16448.
  • 7Sirjacobs D, Alvera-Azcarate A, Barth A, et al, 2011. Cloud filling of o- cean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Or- thogonal Functions methodology. Journal of Sea Research, 65 (1) : 114-130.
  • 8鲍李峰,陆洋,王勇,许厚泽.利用多年卫星测高资料研究南海上层环流季节特征[J].地球物理学报,2005,48(3):543-550. 被引量:18
  • 9陈楚群,施平,毛庆文.南海海域叶绿素浓度分布特征的卫星遥感分析[J].热带海洋学报,2001,20(2):66-70. 被引量:48
  • 10何海伦,李熠,王渊,宋迅殊,刘晓辉.利用经验正交函数数据插值法重构东中国海叶绿素a质量浓度场[J].海洋学研究,2013,31(2):10-15. 被引量:5

二级参考文献162

共引文献419

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部