期刊文献+

稀疏降维的近似凸壳覆盖一类分类器构造 被引量:1

A One-class Classifier Construction Based Approximate Convex Hull Covering Model Using Dimensionality Reduction By Sparse Representation
原文传递
导出
摘要 针对高维数据集常常存在冗余和维数灾难,在其上直接构造覆盖模型难以充分反映数据分布信息的问题,提出一种基于稀疏降维近似凸壳覆盖模型.首先采用同伦算法求解稀疏表示中l_1优化问题,通过稀疏约束自动获取合理近邻数并构建图,再通过LPP(Locality Preserving Projections)来进行局部保持投影,进而实现对高维空间快速有效地降维,最后在低维空间通过构造近似凸壳覆盖实现一类分类.在UCI数据库,MNIST手写体数据库和MIT-CBCL人脸识别数据库上的实验结果证实了方法的有效性,与现有的一类分类算法相比,提出的覆盖模型具有更高的分类正确率. Considering redundant and curse of dimensionality in high-dimensional data, a covering model constructed from these data can not reflect their distributing information. To solve this problem, an approximate convex hull covering model based dimensionality reduction by sparse representation is proposed. Firstly the homotopy algorithm is used to solve e1 norm problem, neighbors are automatically captured based sparse constraint then neighborhood graph is constructed. Next, LPP is applied in order to fast and efficient dimensionality reduction. And finally, an approximate convex hull covering model is constructed in low-dimensional space and realized one-class classification. Experimental results show that the proposed covering method has better correct rate for classification by comparing with results of other one-class classification method on the UCI, MNIST and MIT-CBCL face data sets.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第18期166-174,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(61071199)
关键词 一类分类器 稀疏表示 流行降维 近似凸壳 覆盖模型 one-class classification sparse representation manifold dimensionality reduction approximate convex hull covering model
  • 相关文献

参考文献18

  • 1Kudo M,Nakamura A,Takigawa I.Classification by reflective convex hulls[C]//Proceedings of19th International Conference on Pattern Recognision,2008:1-4.
  • 2Meng D Y,Zhao Q,Xu Z B.Improve Robustness of Sparse PCA by L1-norm Maximization[J].Pattern Recognition,2012,45(1):487-497.
  • 3Lu G F,Zou J,Wang Y.Incremental complete LDA for face recognition[J].Pattern Recognition,2012,45(7):2510-2521.
  • 4Guo X C,Zhang Q,Liu R,et al.3D Human motion retrieval based on ISOMAP dimension reduction[C]//Artificial Intelligence and Computational Intelligence-ehird International Conference,2011,7004(3):159-169.
  • 5Wang Y,Wu Y.Complete neighborhood preserving embedding for face recognition[J].Pattern Recognition,2010,43(3):1008-1015.
  • 6Tu S T,Chen J Y,Yang W,et al.Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR Image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(1):170-179,.
  • 7Xu Y,Zhong A N,Yang J,et al.LPP solution schemes for use with face recognition[J].Pattern Recognition,2010,43(12):4165-4176.
  • 8Qiao L S.Chen S C.Tan X Y.Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2010,43(1):331-341.
  • 9Cevikalp H,Larlus D,Neamtu M.Manifold based Local Classifiers:linear and nonlinear approaches[J].Journal of Signal Processing Systems,2010,61(1):61-73.
  • 10Nalbantov G I,Groenen P J F,Bioch J C.Nearest Convex Hull Classification[R].Econometric Institute Report ET 2006-50,2006.

二级参考文献15

  • 1V.Choulakian.L1-norm projection pursuit principal component analysis[J].Computational Statistics & Data Analysis,2006,50(6):1441-1451.
  • 2C.Ding,D.Zhou,X.He,H.Zha.R1-PCA:Rotational invariant L1-norm principal component analysis for robust subspace factorization[A].In proceedings of IEEE International Conference on Machine Learning,2006,281-288.
  • 3Nojun Kwak.Principal component analysis based on L1-norm maximization[J].IEEE transactions on Pattern Analysis and Machine Intelligence,2008,30 (9):1672-1680.
  • 4Gulmezoglu M B,Dzhafarov V,Keskin M,Barkana A.A novel approach to isolated word recognition[J].IEEE transactions on Speech and Audio Processing,1999,7(6):620-628.
  • 5Gulmezoglu M B,Dzhafarov V,Barkana A.The common vector approach and its relation to principal component analysis[J].IEEE transactions on Speech and Audio Processing,2001,9(6):655-662.
  • 6Cevikalp H,Neamta M,Wilkes M,Barkana A.Discriminative common vectors for face recognition[J].IEEE transactions on Pattern Analysis and Machine Intelligence,2005,27(1):4-13.
  • 7Lauer M.A mixture approach to novelty detection using training data with outliers[A].In Proceedings of the 12th European Conference on Machine Learning,2001:300-311.
  • 8Nunez Garcia J,Kutalik Z,Kwang Hyun Cho,Wolkenhauer,O.Level sets and minimum volume sets of probability density functions[J].Journal of Approximate Reasoning,2003,34(1):25-47.
  • 9Chen-Wen Yen,Chieh-Neng Young,Mark L.Nagnrka.A false acceptance error controlling method for hyperspherical classifiers[J].Neurocomputing,2004,57(1):295-312.
  • 10Lee Ki Young,Kim Dae-Won,Lee Kwang H,Lee Doheon.Density-induced support vector data description[J].IEEE Transactiom on Neural Networks,2007,18(1):284-289.

共引文献1

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部