期刊文献+

算子解析函数的系数不等式 被引量:2

Coefficient Inequalities for Analytic Functions with Operator
原文传递
导出
摘要 定义受限Salagean算于的一般化族M(φ,n,b),这里φ(z)为正买部函数.完整的给出了当:i)b∈C,μ∈C;ii)b〉0,μ∈R;(3)b∈C,μ∈R3种不同情况下关于Fekete-Szego函数A(f)=|a-3-μa-2~2}的最好界,这里.f∈M(φ,n,b).主要结果覆盖了一些相关的重要子族. In this paper, we introduce a general class M(φ, n, b) defined by salagean operator, where φ(z) are the functions with positive real part. Sharp bounds for the Fekete-Szego function |a2 -μa3^2| of the class M(φ,n, b) are obtained with three different cases. Corresponding results for some important subclasses are given.
作者 田琳 韩红伟
出处 《数学的实践与认识》 CSCD 北大核心 2014年第18期239-245,共7页 Mathematics in Practice and Theory
基金 四川省教育厅科研项目(14ZB0364)
关键词 解析函数 SALAGEAN算子 FEKETE-SZEGO不等式 analytic functions salagean operator fekete-szego inequality
  • 相关文献

参考文献8

  • 1Fekete M,Szego G.Eine bemerkung uber ungerade schlichte funktionen[J].J Lond Math Soc,1933,8(1):85-89.
  • 2鲍春梅.一类用Salagean算子定义的解析函数及其Fekete-Szeg不等式[J].辽宁师范大学学报(自然科学版),2010,33(2):157-160. 被引量:1
  • 3傅秀莲.某类解析函数的Fekete-Szeg不等式[J].数学杂志,2011,31(1):127-132. 被引量:2
  • 4熊良鹏,刘晓丽.一类受限于从属关系的解析函数族[J].华中师范大学学报(自然科学版),2012,46(5):522-523. 被引量:3
  • 5Srivastava H M,Mishra A K,Gochhayat P.Certain subclasses of analytic and bi-univalent functions[J].Appl Math Lett,2010,23(10):1188-1192.
  • 6Salagean G S.Subclasses of univalent functions[C]//Lecture Notes in Mathematics Berlin,Heidelberg and New York:Springer-Verlag,1983.362-372.
  • 7Ma W,Minda D A.Unified treatment of some special classes of univalent functions[C]//Proceeding of Conference on Complex Analytic,(Z.Li,F.Ren,L.Yang,S.Zhang,Eds.),Int.Press,1994,157-169.
  • 8Pommerenke C.Univalent functions[M].Vandenhoeck and Ruprecht:Studia Mathematica Mathematische Lehrbucher,1975.

二级参考文献18

  • 1傅秀莲,刘名生.一些解析函数类的Fekete-Szeg不等式[J].海南大学学报(自然科学版),2005,23(3):195-200. 被引量:3
  • 2王艳华,叶中秋.一类单叶函数的Fekete-Szeg问题[J].江西师范大学学报(自然科学版),2006,30(5):492-495. 被引量:2
  • 3夏道行 张开明.从属函数的一些不等式.数学学报,1958,8(3):408-412.
  • 4POMMERENKE Ch.Univalent functions[M].Gottingen:Vandenhoeck and Ruprecht,1975.
  • 5SALAGEAN G S.Subclass of univalent functions[R].Lecture Notes in Math,Springer,Berlin,1983,1013:362-372.
  • 6Ma W, Minda D. A unified treatment of some special classes of univalent functions[M]. Proc. Conf. on Complex Analysis, 1992:157 -169.
  • 7Ravichandran V, Bolcal M, Polatoglu Y, Sen A. Certain subclasses of starlike and convex functions of complex order[J]. Hacettepe Journal of Mathematics and Statistics, 2005, 34: 9-15.
  • 8Kanas S, Wisniowska A. Conic regions and k-uniform convexity [J]. Journal of Computational and Applied Mathematics, 1999, 105(2):327-336.
  • 9Kanas S, Wisniowska A. Conic domains and starlike functions [J]. Rev. Roumaine. Math. Pures Appl., 2000, 45(4): 647- 657.
  • 10Duren P L. Univalent functions[M]. Grundlehren der Mathematischen Wissenschaften, New York: Springer-Verlag, 1983.

共引文献3

同被引文献18

  • 1OZKAN O, ALTNTAS O. Applications of differential subordination [ J ]. Appl Math Lett, 2006,19 (3) :728-734.
  • 2TROJNAR-SPELINA L. On certain applications of the Hadamard product [ J]. Appl Math Comput, 2008, 199 (4) :653-662.
  • 3EL-ASHWAH R M, AOUF M K, ABD-ELTWAB A M. On certain classes ofp-valent functions invoving Dziok-Srivastava opera- tor [J]. Acta Univ Apulensis, 2013,35(2) :203-210.
  • 4XU Q H, XIAO H G, SRIVASTAVA H M. Some applications of differential subordination and the Dziok-Srivastava convolution operator [ J]. Appl Math Comput, 2014, 230(3) :496-508.
  • 5SEOUDY T M, AOUF M K. Inclusion properties for some subclasses of analytic functions associated with generalized integral operator [J]. J Egypt Math Soc, 2013,21(3):11-15.
  • 6KWON O S, CHO N E. Inclusion properties for certain subclasses of analytic functions associated with the Dziok-Srivastava op- erator [J]. J Inequal Appl, 2007,35(4) :1-10.
  • 7MILLER S S, MOCANU P T. Differential subordinations: theory and applications, series on monographs and textbooks in pure and applied mathematics [ M ]. New York: Marcel Dekker Incorporation, 2000.
  • 8RUSCHEWEYH S. Convolutions in geometric function theory [ M]. Montreal: Les Presses de l'Universite de Montreal, 1982.
  • 9RUSCHEWEYH S, SHEIL-SMALL T. Hadamard product of schlicht functions and the polya-schoenberg conjecture [ J]. Com- ment Math Helv, 1973,48(4):119-135.
  • 10刘文娟,彭娟,杨清.与Noor积分算子有关的多叶解析函数子类的性质[J].扬州大学学报(自然科学版),2012,15(3):8-11. 被引量:6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部