期刊文献+

非强制位势下二阶非自治系统周期解的存在性

Existence of Periodic Solution about Non-autonomous Second Order System with Not Coercive Potential
原文传递
导出
摘要 对于非自治二阶系统的位势函数在非强制情形下,利用归约方法和极大极小原理,充分借助空间分解的特性,利用子空间的特征,得到了关于该问题在梯度函数次线性或线性增长情形下新的存在性结果. By using the reduction methods and the minimax theorem,the non-autonomous second order system is studied with the potential function lacking of the coercive condi- tion.Based on the decomposition of the space and the character of the subspace, we obtain the new existence of the solution for this problem involving the gradient function with the sublinear or linear growth.
作者 潘文秀
出处 《数学的实践与认识》 CSCD 北大核心 2014年第18期246-249,共4页 Mathematics in Practice and Theory
关键词 极大极小方法 非自治二阶系统 归约方法 非强制 the minimax theorem non-autonomous second order system the reductionmethods non-coerciveness
  • 相关文献

参考文献7

  • 1Mawhin J and Willim M.Critical Point and Hamiltonian System[M].New York:Springer Verleg,1989.
  • 2Zhao F K,Wu X.Saddle point reduction method for some non-autonomous second order systems[J].J.Math Anal Appl,2004,291(2):653-665.
  • 3Zhao F K,Wu X.Existence and multiplicity of nonzero periodic solution with saddle point character for some non-autonomous second order systems[J].J.Math Anal Appl,2005,308(2):588-595.
  • 4Ye Y W,Tang C L.Periodic solutions for some nonautonomous second order Hamiltonian systems[J].J.Math.Anal.Appl,2008,344(1):462-471.
  • 5Tang C L.Periodic solutions of non-autonomous second order system with sublinear nonlinearity[J].Porc Amer Math Soc,1998,126(11):3263-3270.
  • 6Aizmahin N,An T Q.The existence of periodic solutions of non-autonomous second-order Hamiltonian systems[J].Nonlinear Analysis,2011,74(14):4862-4867.
  • 7Amann H.Saddle points and multiple solutions of differential equationa[J].Math.Z,1979,169(3):127-166.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部