摘要
A scorpion-shaped di-NBD(4-substituted-7-nitrobenzoxadiazole) derivative of cholesterol(Chol-2NBD) was designed and synthesized. The gelation behaviors of the compound in a series of single and mixed liquids were tested. It was shown that the compound is an effective gelator for mixture liquids of THF and benzene at room temperature. Furthermore, FT-IR and temperature-/concentration-dependent 1H NMR spectroscopy studies revealed that hydrogen bonding and π-π stacking among the molecules of Chol-2NBD are two main driving forces for the physical gelation of the mixture liquids. Interestingly, as observed in the gelation test and confirmed by rheological studies, the Chol-2NBD-THF/benzene gel systems, at least the one with 2:8 of the volume ratio of THF to benzene, are mechanically stable, but very sensitive to the stimulus of shear stress, which means that the gel changes into a liquid upon shaking. More interestingly, the liquid returns to gel instantly once the shear stress is removed. This phase transition process could be repeated for many times at room temperature. In addition, primary tests demonstrated that the fluorescence emission of Chol-2NBD is significantly quenched by the presence of water, ammonia water, or ammonia gas, but the emission recovers after evaporation of them. Further detailed investigation is under progress.
A scorpion-shaped di-NBD(4-substituted-7-nitrobenzoxadiazole) derivative of cholesterol(Chol-2NBD) was designed and synthesized. The gelation behaviors of the compound in a series of single and mixed liquids were tested. It was shown that the compound is an effective gelator for mixture liquids of THF and benzene at room temperature. Furthermore, FT-IR and temperature-/concentration-dependent 1H NMR spectroscopy studies revealed that hydrogen bonding and π-π stacking among the molecules of Chol-2NBD are two main driving forces for the physical gelation of the mixture liquids. Interestingly, as observed in the gelation test and confirmed by rheological studies, the Chol-2NBD-THF/benzene gel systems, at least the one with 2:8 of the volume ratio of THF to benzene, are mechanically stable, but very sensitive to the stimulus of shear stress, which means that the gel changes into a liquid upon shaking. More interestingly, the liquid returns to gel instantly once the shear stress is removed. This phase transition process could be repeated for many times at room temperature. In addition, primary tests demonstrated that the fluorescence emission of Chol-2NBD is significantly quenched by the presence of water, ammonia water, or ammonia gas, but the emission recovers after evaporation of them. Further detailed investigation is under progress.
基金
supported by the National Natural Science Foundation of China(91027017 and 21273141)
the Ministry of Education of China for its"Program for Changjiang Scholars and Innovative Research Team in University"of China(IRT1070)