期刊文献+

基于遗传算法的入侵检测系统特征选择方法研究 被引量:3

Research on Feature Selection Method of Intrusion Detection System Based on Genetic Algorithm
下载PDF
导出
摘要 在入侵检测系统中,分类器所选取的特征对系统的性能有很大的影响,大量冗余和不相关特征的存在会降低系统的正确性和实时性,因此如何选取出最优特征组合成为研究的热点问题。在研究当前各种特征选择方法的基础上,提出了一种基于遗传算法的特征组合选择方法。使用遗传算法搜索特征空间,依据Fisher准则计算各种特征组合的分类能力,根据计算结果对特征组合进行选择、交叉、变异,通过多次反复迭代最终选取出最优的特征组合。在实验中分别使用全部特征和选取出的最优特征组合的进行分类验证,最终证明选取出的最优特征组合能够使入侵检测系统在保持高检测率和低误报率的同时具有较高的检测效率,提高了系统的整体性能。 In the intrusion detection system, the features chose by the classifier have a great impact on theperformance of the system. The irrelevant and redundant features can reduce the correctness and the real timeperformance of the system. So, how to select the optimal combination of features has become a hot topic. Onthe basis of researching current methods of feature selection, a method based on genetic algorithm is proposed.The genetic algorithm is used to search the feature space, the classification ability of the feature combinationsare calculated according to the Fisher criterion and do selection, crossover and mutation according to the cal-culation results. This is an iterative process and the optimal combination of features is confirmed at last. Theexperiments are done with both all feathers and the optimal combination of features. The results of the experi-ments show that the intrusion detection system with the optimal combination keeps a high true positive rate anda low false positive rate and at the same time have a high efficiency. The whole performance of the intrusiondetection system is improved.
出处 《华北科技学院学报》 2014年第9期68-72,共5页 Journal of North China Institute of Science and Technology
基金 华北科技学院科技基金项目(2011B029)
关键词 最优特征组合 入侵检测系统 遗传算法 FISHER准则 Optimal combination of features Intrusion detection system Genetic algorithm Fisher criterion
  • 相关文献

参考文献11

二级参考文献90

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 3雷英杰.MATLAB遗传算法工具箱及其应用[M].西安:西安电子科技大学出版社,2004.
  • 4Vapnik V N.The nature of statistical learning theory[M].NY:Springer- Verlag, 1995.
  • 5Huang Cheng-lung,Wang Chieh-jen.A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications, 2006,31 : 231-240.
  • 6Frohlich H,Chapelle O.Feature selection for support vector machines by means of genetic algorithms[C]//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 2003 : 142-148.
  • 7Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 8Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 9Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.
  • 10Zhang Yongguang.Intrusion Detection Techniques for Mobile Wireless Networks[J].Wireless Networks,2003,38(9):1869-1871.

共引文献379

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部