摘要
提出了利用支持向量回归机算法(SVR)建立海水叶绿素-a浓度的软测量方法,采用灰色关联分析法获取叶绿素-a软测量模型的主要辅助测量变量。将基于支持向量回归机的叶绿素-a软测量结果与BP神经网络和T-S模糊神经网络方法进行了对比,结果表明,这种基于支持向量回归机的软测量方法能够有效测量海水叶绿素-a的浓度。
A soft sensing method of measuring the concentration of chlorophyll-a in seawater based on Support Vector Regression (SVR) is proposed.The method of Grey Correlation Analysis is used for obtaining the key secondary variables of soft sensing model of chlorophyll-a.The result of soft sensing based on SVR has been compared with the result from BP neural network and T-S fuzzy neural network.The testing result indicates that this soft sensing method based on SVR can effectively estimate the concentration of chlorophyll-a in seawater.
出处
《海洋预报》
北大核心
2014年第5期87-92,共6页
Marine Forecasts
基金
国家自然科学基金项目(61273068)
上海市自然科学基金项目(12ZR1412600)
上海市教委科研创新项目(13YZ084)
关键词
支持向量回归机
软测量
富营养化
灰色关联分析
样本学习
Support Vector Regression
soft sensing
eutrophication
grey relational analysis
sample learning