期刊文献+

镓基合金凝固与熔化过程中的相变行为 被引量:6

The Phase Transformation Behaviors of Gallium-Based Alloy During the Process of Solidification and Melting
原文传递
导出
摘要 通过DSC热分析技术研究了成分和升降温速率对GaInSn三元合金和GaIn二元合金的固-液相变行为的影响。结果表明,GaInSn三元合金和GaIn二元合金升温过程中的固-液转变(熔化)温度十分稳定,对成分波动不敏感;而降温过程中的液-固转变(凝固)温度则随成分的波动而显著变化。此外,讨论了Ga基合金过冷度与Ga含量和冷却速率之间的关系。 The influence of composition and heating/cooling rate on phase transformation behavior of GaInSn ternary alloy and GaIn binary alloy is researched by DSC technology.Results show that the melting point GaInSn ternary alloy and GaIn binary alloy is very stable and not sensitive to composition;the solidification point is sensitive to the composition.Besides that,the relationship between the undercooling of Gallium-based alloy and the content of Gallium/cooling rate is also discussed.
出处 《金属功能材料》 CAS 2014年第5期6-9,共4页 Metallic Functional Materials
基金 国家青年科学基金项目(51201100)
关键词 镓基合金 过冷度 相变 Gallium-based alloy undercooling transformation
  • 相关文献

参考文献13

  • 1Raatetberg U. Position-Independent Mercury Relay: U. S. Patent 3.529.268[P]. 1970-9-15.
  • 2Akanuma T. Enomoto M. Mercury Wetted Contact Switch: U. S. Patent 4.804. 932[P]. 1989-2-14.
  • 3Zhang 1. KAPEMICK R. Marcille T F. Corrosion of Materials by Liquid NaK Coolant in a Nuclear Power System[J]. Nuclear Science and Engineering. 2008. 160(1): 75-97.
  • 4Liu T. Sen P. Kim C 1. Characterization of Nontoxic LiquidMetal Alloy Galinstan for Applications in Microdevices[J]. Microelectromechanical Systems. journal of. 2012. 21 (2): 443- 450.
  • 5Liu T. Sen P. Kim C 1. Characterization of Liquid-Metal Galinstan? for Droplet Applications [C]. Micro Electro Mechanical Systems (MEMS). 2010 IEEE 23,d International Conference on. IEEE. 2010: 560-563.
  • 6Spengler H. Constitution of Binary and Higher Order Systems of the B-Metals[J]. Z. Merallkd , 1955. 46: 464-467.
  • 7Evans D S. Prince A. Thermal Analysis of Ga-In-Sri System [J]. Metal Science. 1978. 12(9): 411-414.
  • 8Anderson T 1. Ansara I. The Ga-In (Gallium-Indium) System [J].J ournal of Phase Equilibria. 1991, 12(1): 64-72.
  • 9Turnbull D. Kinetics of Heterogeneous Nucleation [J]. The lournal of Chemical Physics. 2004. 18(2): 198-203.
  • 10Mueller B A. Perepezko 1 H. The Undercooling of Aluminum [J]. Metallurgical Transactions A. 1987. 18(3): 1143-1150.

二级参考文献13

  • 1Ojha S N. Metastable phase formation during solidification of undercooled melt. Materials Science and Engineering A, 2001, 304-306: 114~118.
  • 2Liu R P, Volkmann T, Herlach D M. Undercooling and solidification of Si by electromagnetic levitation. Acta mater, 2001, 49: 439~444.
  • 3Liu X R, Cao C D, Wei B. Microstructure evolution and solidification kinetics of undercooling Co-Ge eutectic alloys. Scripta Materialia, 2002, 46: 13~18.
  • 4Kim Y S, Hwang C W. Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys. Journal of Alloys and Compounds, 2003, 352: 237~245.
  • 5Liu Y Z, Chen Z H, Wang J N. Large undercooling rapid solidification and nucleation mechanism in multi-stage atomization. Science and Technology of Advanced Materials, 2001, 2: 181~184.
  • 6Mizoguchi T, Perepezko J H. Nucleation behavior during solidification of casting iron at high undercooling. Materials Science and Engineering A, 1997, 226: 813~817.
  • 7Cao C D, Letzig T, Gorler G P, et al. Liquid phase separation in undercooled Co-Cu alloys processed by electromagnetic levitation and differential thermal analysis. Journal of Alloys and Compounds, 2001, 325: 113~117.
  • 8Mueller B A, Perepezko J H. The undercooling of aluminum. Metal Trans A, 1987, 18: 1143~1150.
  • 9Guan W B, Gao Y L, Zhai Q J, et al. Undercooling of droplet solidification for molten pure aluminum. Materials Letters, 2005, 59(13): 1701~1704.
  • 10齐丕骧.对压力下结晶形核率的理论计算[J]金属学报,1984(06).

共引文献14

同被引文献54

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部