期刊文献+

月球反射光谱学及应用 被引量:6

Reflectance spectroscopy of the Moon and its application
下载PDF
导出
摘要 随着我国探月工程稳步开展以及未来深空探测需求,反射光谱学研究在我国重新受到重视。文中简要介绍了月球反射光谱学原理及其研究方法,并以"嫦娥三号"着陆场所在的雨海地区为例展示反射光谱学的部分应用。与背面斜长岩高地相对单调的光谱特征不同,雨海周边高地展示了多样性的吸收特征,岩石类型以苏长岩质岩石为主,橄榄石、辉石、尖晶石等矿物都有分布。月球上最古老的和最年轻的玄武岩在雨海盆地也都有分布。古老的中、低钛玄武岩以易变辉石为主兼有少量低钙普通辉石,年轻的高钛玄武岩富含橄榄石。雨海乃至整个风暴洋地区玄武岩较之其他月海玄武岩贫Ca。雨海地区的元素、矿物组成以及玄武岩时代都具多样性,该区是研究月球热演化的重要地区。 Reflectance spectroscopy plays an important role in the exploration of the Moon and planets.The payloads using the reflectance spectroscopy technology have been onboard almost all the missions except for some very few missions with special objects.This paper firstly briefly introduces the principles of reflectance and its research domain.Then two examples describing the application of the reflectance spectroscopy are shown.The first one shows the elements,spectra,and separation of basaltic units using reflectance spectroscopy.The second example shows the mineral diversity of the Imbrium region derived from the Moon Mineralogy Mapper(M3)data.The calibration of the instruments,quantitation of minerals and the mechanism dominating and altering the absorption are the key fields deserving of study in the future.The highland exhibits a mafic character and is dominated by the noritic composition.Imbrium has both the oldest and the youngest basalts of the Moon,suggesting the geologic diversity of this area.Mafic mineralogy of the basalts is characterized by abundant olivine in the late-stage Eratosthenian basalts and pigeonite to sub-calcic augite in Imbrian units,suggesting Ca-depletion of the Procellarum KREEP Terrane(PKT)compared to nonPKT.
作者 吴昀昭
出处 《地学前缘》 EI CAS CSCD 北大核心 2014年第6期74-87,共14页 Earth Science Frontiers
基金 国家自然科学基金项目(41172296) 教育部新世纪优秀人才支持计划项目(NCET-11-0242) 国家重大科学仪器设备开发专项(2012YQ050250)
关键词 反射光谱学 月球 月球成像制图仪 雨海 reflectance spectroscopy Moon M3 Imbrium
  • 相关文献

参考文献29

  • 1Adams J B.Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system[J].Journal of Geophysical Research,1974,79(32):4829-4836.
  • 2Clark R N,Roush T L.Reflectance spectroscopy:Quantitative analysis techniques for remote sensing applications[J].Journal of Geophysical Research:Solid Earth,1984,89(B7):6329-6340.
  • 3Burns R G.Mineralogical Applications of Crystal Field Theory[M].Cambridge:Cambridge University Press,1993.
  • 4Hapke B.Theory of Reflectance and Emittance Spectroscopy[M].Cambridge:Cambridge University Press,2012.
  • 5Pieters C M,Englert P A.Remote Geochemical Analysis,Elemental and Mineralogical Composition[M].Cambridge:Cambridge University Press,1993.
  • 6Pieters C M,Mustard J F,Sunshine J M.Quantitative mineral analyses of planetary surfaces using reflectance spectroscopy[J].Mineral Spectroscopy:A Tribute to Roger G.Burns,1996(5):307-325.
  • 7Klima R L,Dyar M D,Pieters C M.Near-infrared spectra of clinopyroxenes:Effects of calcium content and crystal structure[J].Meteoritics&Planetary Science.2011,46(3):379-395.
  • 8Born M,Wolf E.Principles of Optics:Electromagnetic Theory of Propagatio[M].Cambridge:Cambridge University Press,1999:986.
  • 9Pieters C M,Goswami J N,Clark R N,et al.Character and spatial distribution of OH-/H2O on the surface of the Moon seen by M3on Chandrayaan-1[J].Science,2009,326:568-572.
  • 10Ohtake M,Matsunaga T,Haruyama J,et al.The global distribution of pure anorthosite on the Moon[J].Nature,2009,461:236-240.

二级参考文献113

  • 1WANG ZhenZhan1, LI Yun1,2, JIANG JingShan1 & LI DiHui1 1 National Microwave Remote Sensing Laboratory, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China,2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China.Lunar surface dielectric constant,regolith thickness, and ~3He abundance distributions retrieved from the microwave brightness temperatures of CE-1 Lunar Microwave Sounder[J].Science China Earth Sciences,2010,53(9):1365-1378. 被引量:7
  • 2薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004,19(3):717-720. 被引量:19
  • 3Basaltic Volcanism Study Proiect (BVSP). 1981. Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press.
  • 4Belton M J S, Greeley R, Greenberg R, McEwen A, Klaasen K P, Head J W, Pieters C M, Neukum G, Chapman C R, Geissler P, Haffernan C, Breneman H, Anger C, Carr M H, Davies M E, Fanale F P, Gierasch P J, Ingersoll A P, Johnson T V, Pilcher C B, Thompson R, Veverka J, Sagan C. 1994. Galileo multispectral imaging of the North Polar and Eastern Limb regions of "the Moon. Science, 264 (5162): 1112-1115.
  • 5Bugiolacchi R, Guest J E. 2008. Compositional and temporal investigation of exposed lunar basalts in the Mare Imbrium region. Icarus, 197 (2008): 1-18.
  • 6Charette M P, McCord T B, Pieters C, Adams J B. 1974. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. Journal of Geophysical Research-Planets, 79 (11): 1605-1613.
  • 7Delano J W, Taylor S R, Ringwood A E. 1980. Composition and structure of deep lunar interior. Lunar and Planetary Science Conference XI, Abstract 1080: 225-227.
  • 8Elphic R C, Lawrence D J, Gasnault O M, Maurice S, Feldman W C, Barraelough B L, Lucey P G, Blewett D T, Binder A B. 2002. Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research-Planets, 107 (E4) : 8-1- 8-8.
  • 9Giguere T A, Taylor G J, Hawke B R, Lucey P G. 2000. The titanium contents of lunar mare basalts. Meteoritics Planetary Science, 35 (1):193-200.
  • 10Gillis J J, Jolliff B L, Elphic R C. 2003. A revised algorithm for calculating TiOz from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiOz concentrations. Journal of Geophysical Research Planets, 108 (E2) : 3-1-3-18.

共引文献29

同被引文献155

  • 1张明皓,陈超,兰瑞平,陈欢欢.月球表面多种金属元素的分布特征初探[J].地学前缘,2007,14(5):277-284. 被引量:11
  • 2肖智勇,Robert G.Strom,曾佐勋.撞击坑统计技术在行星表面定年应用中的误区[J].地球科学(中国地质大学学报),2013,38(S1):145-160. 被引量:4
  • 3薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004,19(3):717-720. 被引量:19
  • 4刘剑,欧阳自远,李春来,邹永廖,胥涛.中红外光谱在月球探测中的应用[J].矿物学报,2006,26(4):435-440. 被引量:2
  • 5Anderson AT, Crewe AV, Isaacson MS et al. 1970. Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In : Proceedings of the Apollo 11 Lunar Science Conference. New York : Pergamon Press, 897 - 925.
  • 6Beard BL, Taylor LA, Scherer EE, Johnson CM and Snyder GA. 1998. The source region and melting mineralogy of high-titanium and low- titanium lunar basalts deduced from Lu-Hf isotope data. Geochimica et Cosmochimica Acta, 62 (3) : 525 -544.
  • 7Bills BG and Ferrari AJ. 1977. A lunar density model consistent with topographic, gravitational, librational, and seismic data. Journal of Geophysical Research, 82(8) : 1306 - 1314.
  • 8Boyee JM. 1976. Ages of flow units in the lunar nearside maria based on Lunar Orbiter Ⅳ photographs. In: Proceedings of the 7th Lunar and Planetary Science Conference. New York: Pergamon Press, 2717 - 2728.
  • 9Bugiolacchi R and Guest JE. 2008. Compositional and temporal investigation of exposed lunar basalts in the Mare Imbrium region. Icarus, 197(1): 1-18.
  • 10Davis Jr PA. 1980. Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models. Journal of Geophysical Research: Solid Earth ( 1978 - 2012), 85 (B6) : 3209 - 3224.

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部