期刊文献+

不同粒径的月球橄榄石二向性反射特征研究 被引量:1

Bidirectional reflectance of lunar olivine with the consideration of grain size
下载PDF
导出
摘要 研究月表矿物组成和分布,对于探测月表地质构造以及月球的起源和演化具有重要的意义。因此,物质成分探测一直是月球研究的重点课题之一。尽管人类已经能够从月球采集样品进行实验室分析,但遥感技术仍然是研究月球的主要手段。文中主要目的是模拟不同粒径下橄榄石的二向性反射特征。为此,首先提出模拟不同粒径下反射特征的方法,然后利用Hapke模型和Mie散射理论对不同粒径下富铁和富镁橄榄石的二向性反射特征进行了模拟。模拟结果显示,富镁橄榄石的二向性反射率较富铁橄榄石的反射率高。最后,分析了反射率差值和等效粒径的相关性。该结论为选择探月传感器的波段组合、识别橄榄石镁铁含量提供了理论依据,也为应用遥感数据的橄榄石的判别奠定了基础。 The distribution of mineral abundances on lunar surface is one of the significant kinds of information which contains important data such as the geological formation,origin and evolution of the Moon.Although lunar mineral samples were brought back and analyzed in laboratory,remote sensing technology still plays important role in lunar study.This paper briefly introduces the bidirectional reflectance feature of olivine based on grain size.In order to distinguish the olivine's composition,a method is proposed to simulate reflectance with the consideration of grain size.We discussed the spectral characteristics of Mg-rich olivine and Fe-rich olivine based on the reflectance which calculated by Mie theory and Hapke's radiative transfer model in this study.The simulated results showed that the spectral reflectance of Mg-rich olivine was higher than the reflectance of Fe-rich olivine.Finally,the linear relationships between reflectance difference and mean size weighted by cross sectional area were analyzed.The results provide the basis of identifying the olivine using absorptive positions and depths of the olivine,which can also be applied to future remote sensing data processing.
出处 《地学前缘》 EI CAS CSCD 北大核心 2014年第6期150-154,共5页 Earth Science Frontiers
基金 国家自然科学基金项目(41271434 41372337 41373068) 月球与深空探测重点实验室开放基金资助项目
关键词 二向性反射率 橄榄石 月球 粒径 bidirectional reflectance olivine lunar grain size
  • 相关文献

参考文献8

  • 1Isaacson P J,Pieters C M.Detecting a broader lunar magnesian suite with orbital spectroscopy[J].Lunar Planetary Science,2008,39:1783.
  • 2Isaacson P J,Pieters C M,Besse S,et al.Remote compositional analysis of lunar olivine-rich lithologies with MoonMineralogy Mapper(M3)spectra[J].Journal of Geophysical Research-Planets,2011,116:E00G11,17.
  • 3Yamamoto S,Nakamura R,Matsunaga T,et al.Possible mantle origin of olivine around lunar impact basins detected by SELENE[J].Nature Geoscience,2010,3(8):533-536.
  • 4Sunshine J M,Pieters C M.Determining the composition of olivine from reflectance spectroscopy[J].Journal of Geophysical 1998,103(E6):13675.
  • 5Isaacson P J,Pieters C M.Deconvolution of lunar olivine reflectance spectra:Implications for remote compositional assessment[J].Icarus,2010,210(1):8-13.
  • 6Isaacson P J,Pieters C M,Besse S,et al.Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper(M3)Spectra[J].Journal of Geophysical Research,2011,116(E6):1-17.
  • 7Hapke B.Space weathering from Mercury to the Asteroid Belt[J].Journal of Geophysical Research,2001,106(E5):10039.
  • 8Mie G.Contributions to the optics of turbid media,especially colloidal metal solutions[J].The Journal of Physical Chemistry B,1999,103(18):3529-3533.

同被引文献13

  • 1刘建忠,欧阳自远,张福勤,李春来,邹永廖.月球的地体构造与起源模式[J].岩石学报,2009,25(8):2011-2016. 被引量:5
  • 2李泳泉,刘建忠,欧阳自远,李春来,邹永廖.月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演[J].岩石学报,2007,23(5):1169-1174. 被引量:14
  • 3Chandrasekhar S. 1960. Radiative Transfer. New York: Dover.
  • 4Franklin J and Turner DL 1992. The application of a geometric optical canopy reflectance model to semiarid shrub vegetation. IEEE Transactions on Geoscience and Remote Sensing, 30 (2) : 293 -301.
  • 5Li XW and Strahler AH. 1985. Geometric-optical modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing, 23(5) : 705 -721.
  • 6Li XW, Strahler AH and Woodcock CE. 1995. A hybrid Geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Transactions on Geoscience and Remote Sensing, 33(2) : 446 -480.
  • 7Liu B, Liu JZ, Zhang GL et al. 2013. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang' E-3 lunar rover: Based on ground validation experiment data. Research in Astronomy and Astrophysics, 13 (7) : 862 -874.
  • 8Pieters CM, Taylor LA, Rckay DS et al. 2000. Spectral characterization of lunar mare soils. In: 31th Lunar Planet Science of Lunar and Planetary Institute. Houston, Texas : 1865.
  • 9Pieters CM, Besse S, Buardman Jet al. 2011. Mg-spinel lithology: A new rock type on the lunar farside. Journal of Geographysical Research : Planets, 116(E6) : E00G08.
  • 10Sun ZQ, La YF and Lu S. 2015. An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 163 : 102 - 119.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部