期刊文献+

分层变分包含问题中经由分层不动点途径的黏性方法 被引量:1

Viscosity Method for Hierarchical Fixed Point Approach to Hierarchical Variational Inclusion Problems
下载PDF
导出
摘要 基于一原创技术—指标选取法,以黏性法分层逼近可数族非线性映射之公共不动点.并于适当条件下得一强收敛定理,用以解决Hilbert空间背景下之分层变分包含问题. Based on an original technique, i.e., a special way of choosing the indexes of involved mappings, we utilize a viscosity method for hierarchically approximating common fixed points of a kind of countable families of nonlinear mappings; under suitable conditions, a strong convergence theorem is obtained for solving the hierarchical variational inclusion problems in the setting of Hilbert spaces.
作者 邓伟奇
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第5期1254-1263,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(11061037) 云南财经大学科学研究基金一般项目(YC2013A02)资助
关键词 分层不动点 黏性逼近 分层变分包含 预解算子 Hierarchical fixed point Viscosity approximation Hierarchical variational inclusion Resolvent operator.
  • 相关文献

参考文献2

二级参考文献40

  • 1Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [ M ]. Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
  • 2Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[ J]. Inverse Problems, 2004, 20( 1 ) : 103-120.
  • 3Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [ J ]. J Math Anal Appl, 2007, 327 (2) : 1244-1256.
  • 4Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[ J]. J Inequalities and Appl, 2009, Article ID 208592, 13 pages, doi: 10.1155/2009/208692.
  • 5Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities [ J ]. Bull Austral Math Soc, 2009, 80 ( 1 ) : 117-124.
  • 6Malnge P E, Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3) : 529-538.
  • 7Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space [J]. JMathAnalAppl, 2006, 318(1): 43-52.
  • 8Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems [ J ]. Inverse Problems, 2007, 23(4): 1635-1540.
  • 9Solodov M. An explicit descent method for bilevel convex optimization [ J ]. J Convex Anal, 2007, 14(2): 227-237.
  • 10Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchi- cal fixed point problems[J]. Inverse Problems, 2008, 24( 1 ) : 15015-15022.

共引文献15

同被引文献19

  • 1Bmwder F E. Fixed point theorems for noneompact mappings in Hilbert spaces[J]. Proc Nat/Aead Sci USA, 1965,53 (6) :1272-1276.
  • 2Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces [J]. J Math Anal Appl, 1980,75 ( 1 ) :287 -292.
  • 3Xu H K. Strong convergence of an iterative method for nonexpansive and accretive operators[J]. J Math Anal App1,2006,314 (2) :631-643.
  • 4Deutsch F, Yamada I. Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings [J]. Numer Funet Anal Optim,1998,19( 1 ) :33-56.
  • 5Xu H K. Iterative algorithms for nonlinear operators [J]. J London Math Soc,2002,66 (1) :240-256.
  • 6Xu H K. An iterative approach to quadratic optimization [J]. J Optim Theory Appl,2003,116 (3) :659-678.
  • 7Plubtieng S,Thammathiwat T. A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities[J]. J Glob Optim,2010,46(3 ) :447-464.
  • 8Xu H K. Viscosity approximation methods for nonexpansive mappings [J]. J Math Anal Appl,2004,298 (1) :279-291.
  • 9Moudafi A. Viscosity approximation methods for fixed-points problems[J]. J Math Anal App1,2000,241 ( 1 ) :46-55.
  • 10Marino G, Xu H K. A general iterative method for nonexpansive mapping in Hilbert spaces [J]. J Math Anal Appl,2006,318 ( 1 ) :43 -52.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部