期刊文献+

基于用户相似度的加权项目偏差SlopeOne协同过滤推荐算法 被引量:3

Weighted item deviation slopeOne collaborative filtering recommendation algorithm based on the user similarities
下载PDF
导出
摘要 协同过滤算法旨在从海量的历史数据中,挖掘出拥有共同经验的用户群体的行为习惯,以此来协助对目标用户的个性化偏好作出合理的预测。根据这些预测结果,对目标用户进行有针对性的产品或资讯推荐,这对商家来说具有重大的意义和价值。传统的SlopeOne协同过滤推荐算法虽然实现简单,运行效率高,但其准确率不高。为了进一步提高预测结果的准确率,同时又尽可能的保留原算法所具有的效率优势,提出了基于用户相似度的加权项目偏差计算方法,优化了项目之间偏差性的衡量尺度,从而得到基于用户相似度的加权项目偏差SlopeOne协同过滤推荐算法(WID_SlopeOne_US)。大量实验证明,新算法具有更高的准确率、较高的效率、和良好的稳定性等优点。 A collaborative filtering algorithm was designed to help make a reasonable prediction of targeted users’personalized preferences in the current study.It could be achieved through digging out the behavior of the user population with common experience from massive historical data.Businesses could then supply customized products and information recommendation for the targeted users according to these predictions, which were found significant and valuable.Traditional SlopeOne collaborative filtering algorithm is simple and high-efficiency,but its accuracy is relatively low.Therefore,a novel weighted item deviation algorithm was proposed in order to further improve the predicting accuracy,and retain the efficiency advantage of tra-ditional algorithm.The weighted item deviation SlopeOne collaborative filtering recommendation algorithm was obtained based on the user similarities (WID_SlopeOne_US)after optimizing measure of the deviation between items.Lots of experimental results had shown that our new algorithm present higher accuracy,ef-ficiency and stability.
作者 吕诚
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第4期342-347,共6页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(20132bab201044) 江西理工大学科研基金项目资助(NSFJ2014-G35)
关键词 协同过滤 用户相似度 加权 项目偏差 预测准确率 collaborative filtering user similarity weighted item deviation predicting accuracy
  • 相关文献

参考文献27

  • 1王东龙,李茂青.基于遗传算法的数据挖掘技术应用[J].南昌大学学报(工科版),2005,27(1):81-84. 被引量:16
  • 2BREESE J, HECHERMAN D, KADIE C. Empirical Analysis of Predictive Algorithms of Collaborative Fil- tering[C]//Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI' 98). San Francisco Morgan Kaufmann, 1998 : 43-52.
  • 3HERLOCKER J L,KONSTAN J A,BORCHERS A, et al. An Algorithmic Framework for Performing Col- laborative Filtering[C]//Proc of the 22nd Annual Int ACM SIGIR Conf on Research and Development in In- formation Retrieval. New York ACM, 1999 .. 230-237.
  • 4RESNIEK P,LACOVOU N,SUCHAK M,et al. Grou- plens : An Open Architecture for Collaborative Filtering of Netnews[C]//Proc of the ACM CSCW' 94 Conf on Computer-Supported Cooperative Work. New York: ACM,1994:175-186.
  • 5HERLOCKER J, KONSTAN J A, RIEDL J. An Em- pirical Analysis of Design Choices in Neighborhood- based Collaborative Filtering Algorithms[J]. Informa- tion Retrieval, 2002,5 (4) : 287-310.
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Item- based Collaborative Filtering Recommendation Algo- rithms[C]//Proceedings of the 10th International Con- ference on World Wide Web. New York, NY, USA: ACM,2001:285-295.
  • 7LI Xue,ZUO Wanli, HE Fengling,et al. An Improved Item-based Collaborative Filtering Recommendation Algorithm[J]. Journal of Computer Research and De- velopment, 2009,46 : 394-399.
  • 8黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 9BARRAGANS-Martinez A B, Costa-Montenegro E, BURGUII.LO J C, et al. A Hybrid Content-based andItem-based Collaborative Filtering Approach to Recom- mend TV Programs Enhanced with Singular Value De- composition[J]. Information Sciences, 2010,180 ( 22 ) : 4290-4311.
  • 10XUE Guirong, LIN Chenxi, YANG Qiang, et al. Scala- ble Collaborative Filtering Using Cluster-based Smoot- hing[C]//Proceedings of the 28th Annual Internation- al ACM SIGIR Conference on Research and Develop- ment in Information Retrieval, Salvador, Brazil, 2005. New York, NY, USA.. ACM,Z005 .. 114-121.

二级参考文献76

共引文献1096

同被引文献46

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部