期刊文献+

基于RBF神经网络PCA变换的识别技术 被引量:3

Recognition Technology Based on RBF Neural Network with PCA Transform
下载PDF
导出
摘要 应用RBF神经网络作为分类器用于人脸识别。提出了两个重要的准则来估计RBF单元的初始宽度,这个宽度可以控制RBF神经网络分类器的泛化能力。PCA方法把训练样本集投影到特征脸空间,以减少维数。在PCA变换的基础上,作者进一步运用FLD方法,为分类找到一个最佳的子空间,使类间距离和类内距离之比最大化。在ORL数据库上进行了仿真,仿真结果表明,该算法具有高效性和有效性。 The RBF neural network for classification is applied in face recognition.With two important criterion for estimating the initial width of RBF unit,the width can control the generalization ability of RBF neural network classifier.PCA method to the training sample set the projection to the face space,to reduce dimension.On the basis of the PCA transform,an optimal subspace classification makes the dis-tance between the classes to maximize the ratio of the distance using FLD method.Simulation is conduc-ted on the ORL database,and its results show that the algorithm is efficiency and effectiveness.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期135-139,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 广东省自然科学基金资助项目(S2011020002719)
关键词 径向基函数 权值调整 梯度下降法 人脸特征 radial basis function (RBF) weight adjustment gradient descent method facial feature
  • 相关文献

参考文献15

  • 1MYOOD J, DARKEN C J. Fast Leaning in network of lo- cally-tuned processing units [ J ]. Neural Computation, 2011,1 : 281 -294.
  • 2GIROSI F, POGGIO T. Networks and the best approxi- mation property [ J ]. Biological Cybernetics, 2012,63 : 169 - 176.
  • 3杨文光.权值直接确定的三角型模糊前向神经网络[J].中山大学学报(自然科学版),2013,52(2):33-37. 被引量:11
  • 4任爱红.模糊随机过程函数列均方一致Henstock积分的可积性[J].中山大学学报(自然科学版),2012,51(4):41-44. 被引量:8
  • 5CHEN S, COWAN C F N, GRANT P M. Orthogonal least squares algorithm for radial basis function network [J]. IEEE Trans Neural Networks, 2011,2:302 -310.
  • 6Wu S Q, Er M J. Dynamic Fuzzy Neural Networks: A Novel Approach to Function Approximation [ J ]. IEEE Trans Syst, Man, Cybern: Part B, 2012,30:358 -364.
  • 7ESPOSITO A, MARINARO M, ORICCHOI D et al. Ap- proximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm [ J ]. Neural Net- works, 2013,25:651 - 665.
  • 8BORS A G, PITAS I. Median radial basis function neural network[ J ]. IEEE Trans Neural Networks, 2012,23: 1351 - 1364.
  • 9HAYKIN S. Neural networks, a comprehensive founda- tion [ J ]. New York: Macmillan, 2012.
  • 10BORS G, GABBOUJ M. Minimal topology for a radial basis functions neural networks for pattern classification [ J]. Digital processing, 2012,34 : 173 - 188.

二级参考文献24

  • 1曹飞龙,张永全,张卫国.单隐层神经网络与最佳多项式逼近[J].数学学报(中文版),2007,50(2):385-392. 被引量:13
  • 2吴从忻,马明.模糊分析基础[M].北京:国防工业出版社,1991.
  • 3李士勇.模糊控制·神经网络和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998..
  • 4GONG Z T. On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral [ J ]. Fuzzy Sets and Systems, 2004, 145 : 381 -393.
  • 5GONG Z T, SHAO Y B. The controlled convergence the- orem for the strong Henstock integrals of fuzzy-number- valued functions [ J ]. Fuzzy Sets and Systems, 2009, 160:1528 - 1546.
  • 6FENG Y H. Mean-squares integral and differential offuzzy stochastic process [ J ]. Fuzzy Sets and Systems, 1999, 102:271 -280.
  • 7FENG Y H. Mean-squares Riemann-Stieltjes integrals of fuzzy stochastic process and theirs applications [ J ]. Fuzzy Sets and Systems, 2000, 110:27 -41.
  • 8李静.模糊随机过程的均方Henstock积分[D].中国优秀硕士学位论文全文数据库,2007.
  • 9LIANAS B, SAINZ F J. Constructive approximate interpo- lation by neural networks [J]. J Comput Applied Math, 2006, 188:283 - 308.
  • 10李静,冯玉瑚.模糊随机过程的均方Henstock积分[J].东华大学学报(自然科学版),2007,33(5):590-594. 被引量:7

共引文献15

同被引文献87

  • 1中国互联网络信息中心.2013-2014年中国移动互联网调查研究报告[EB/OL].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/ydhlwbg/201408/P020140826360212699278.pdf,2014-08-26.
  • 2INDEX C V N. Global Mobile Data Traffic Forecast Update 2014 -2019. White paper ell -520862 [EB/OL]. (2015 -01-01) [2015 -04 -01]. http;//www. cisco. com/ c/ en/ us/ solutions/ collateraV service-provider/ visual-networking-indexvnilwhite_ paper _ ell - 520862. htm1.
  • 3CHEN D. TSAI S. CHANDRASEKHAR V, et a1. Residual enhanced visual vectors for on-device image matching [C]// Signals. Systems and Computers (ASILOMAR). 2011 Conference Record of the Forty Fifth Asilomar Conference. IEEE, 2011; 850 - 854.
  • 4TSAI S S. CHEN D. SINGH J P, et al. Rate-efficient. real-time CD cover recognition on a camera-phone [C]// Proceedings of the 16th ACM International Conference. Multimedia. ACM. 2008; 1023 -1024.
  • 5TSAI S, CHEN D, CHANDRASEKHAR V, et al. Mo- bile product recognition [C] // Proceedings of the 18th ACM International Conference. Multimedia (MM), 2010: 1587 - 1590.
  • 6GIROD B, CHANDRASEKHAR V, CHEN D M, et al. Mobile visual search [J]. Signal Processing Magazine, IEEE, 2011,28(4): 61 -76.
  • 7KE Y, SUKTHANKAR R. PCA -SlIT: A more distinctive representation for local image descriptors [C]//Proc Computer Vision and Pattern Recognition (CVPR), 2004: 506 - 513.
  • 8PERRONNIN F, LIU Y, SANCHEZ J, et al. Large-scale image retrieval with compressed fisher vectors [C]// Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference. IEEE, 2010: 3384 - 3391.
  • 9DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C] //Proceedings of the Twentieth Annual Symposium. Computational Geometry, ACM, 2004: 253 - 262.
  • 10SHAKHNAROVICH G. Learning task-specific similarity [D]. Massachusetts Institute of Technology, 2005.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部