摘要
应用RBF神经网络作为分类器用于人脸识别。提出了两个重要的准则来估计RBF单元的初始宽度,这个宽度可以控制RBF神经网络分类器的泛化能力。PCA方法把训练样本集投影到特征脸空间,以减少维数。在PCA变换的基础上,作者进一步运用FLD方法,为分类找到一个最佳的子空间,使类间距离和类内距离之比最大化。在ORL数据库上进行了仿真,仿真结果表明,该算法具有高效性和有效性。
The RBF neural network for classification is applied in face recognition.With two important criterion for estimating the initial width of RBF unit,the width can control the generalization ability of RBF neural network classifier.PCA method to the training sample set the projection to the face space,to reduce dimension.On the basis of the PCA transform,an optimal subspace classification makes the dis-tance between the classes to maximize the ratio of the distance using FLD method.Simulation is conduc-ted on the ORL database,and its results show that the algorithm is efficiency and effectiveness.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第6期135-139,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
广东省自然科学基金资助项目(S2011020002719)
关键词
径向基函数
权值调整
梯度下降法
人脸特征
radial basis function (RBF)
weight adjustment
gradient descent method
facial feature