期刊文献+

两类一致等时系统的中心条件和极限环分支 被引量:1

Center Conditions and Limit Cycle Bifurcations for Two Classes of Rigid Systems
下载PDF
导出
摘要 对于一类六次一致等时系统,给出原点为中心的充要条件,并证明从细焦点至多可分支出3个极限环;对于一类七次一致等时系统,给出原点为中心的充要条件,并证明从细焦点至多可分支出4个极限环。 For a class of six order rigid systems,the necessary and sufficient conditions for the origin to be center are given.And the maximal number of limit cycles bifurcating from the weak focus is proved to be 3 .For a class of seven order rigid systems,the necessary and sufficient conditions for the origin to be center are given.And the maximal number of limit cycles bifurcating from the weak focus is proved to be 4.
作者 桑波
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期146-149,154,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 数学天元基金资助项目(11226041)
关键词 一致等时系统 约化焦点量 时间可逆性 极限环 rigid system reduced focal values time-reversibility limit cycle
  • 相关文献

参考文献10

  • 1刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 2WANG D M. Mechanical manipulation for a class of dif- ferential systems [ J ]. Journal of Symbolic Computation, 1991, 12(2) : 233 -254.
  • 3YU P. Computation of normal forms via a perturbation technique [ J ]. Journal of Sound and Vibration, 1998, 211(1) : 19 -38.
  • 4桑波,朱思铭.一类微分系统的非退化中心问题[J].系统科学与数学,2013,33(5):599-606. 被引量:3
  • 5CONTI R. Centers of planar polynomial systems: A re- view [J]. Matematiehe, 1998, 53(2): 207-240.
  • 6CHAVARRIGA J, GARCiA I A, GIN6 J. On integrabili- ty of differential equations defined by the sum of homoge- neous vector fields with degenerate infinity [ J]. Int J Bi- furcation and Chaos, 2001, 11 (3) :711 -722.
  • 7ALGABA A, REYES M, BRAVO A. Uniformly isochro- nous quintic planar vector fields [ C ] // Fiedler B Pro- ceedings of the International Conference on Differential Equations, Vol 2. World Scientific Publishing, Berlin, Germany, 1999, 1415 - 1417.
  • 8GASULL A, PROHENS R, TORREGROSA J. Limit cy- cles for rigid cubic systems [ J ]. J Math Anal Appl,2005, 303 (2) : 391 -404.
  • 9DIAS F S, MELLO L F. The center-focus problem and small amplititude limit cycles in rigid systems[J]. Dis- crete and Continuous Dynamical Systems-Series A, 2012, 32 (5) : 1627 -1637.
  • 10刘一戎,李继彬.平面向量场的若干经典问题[M].北京:科学出版社,2010.

二级参考文献15

  • 1王铎,毛锐.计算Lyapunov量的复算法[J].自然科学进展(国家重点实验室通讯),1995,5(6):754-757. 被引量:6
  • 2刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 3张芷芬,丁同仁,黄文灶等.微分方程定性理论.北京:科学出版社,1985.
  • 4Wang D. A recursive formula and its application to computations of normal forms and focal values, eds by Liao S T, et al., Dynamical Systems, Singapore: World Sci. Publ., 1993.
  • 5Yu P. Computation of normal forms via a perturbation technique. Journal of Sound and Vibra- tion, 1998, 211(1): 19-38.
  • 6Algaba A, Freire E, Gamero E. Isochronicity via normal form. Qual. Theory Dyn. Syst., 2000, 1(2): 133-156.
  • 7Garcfa I A, Grau M. A Survey on the Inverse Integrating Factor. Qual. Theory Dyn. Syst., 2010, 9(1-2), 115-166.
  • 8Sadovskii A P:, Shcheglova T V. Solution of the center-focus problem for a nine-parameter cubic system. Differential Equations, 2011, 47(2): 208-223.
  • 9Dias F S, Mello L F. The center focus problem and small amplitude limit cycles in rigid systems. Discrete and Continous Dynamical Systems, 2012, 32(5): 1627-1637.
  • 10Coati R. Centers of planar polynomial systems. A review. Matematiche, 1998, 53(2): 207-240.

共引文献102

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部