期刊文献+

基于ULBP特征子空间的2DLDA人脸识别方法 被引量:6

Face Recognition of 2DLDA Based on ULBP Eigensubspace
下载PDF
导出
摘要 将图像层次化分割并提取各个图像子块的均匀模式的局部二值模式(ULBP)直方图特征,在考虑到全局及局部特征的同时,将处理空间从灰度空间投影到ULBP特征子空间,有效消除行向量之间的相关性,从而使应用行二维线性鉴别分析处理得到的鉴别投影矩阵性能更优.在ORL、YALE及FERET人脸库上与基于二维线性鉴别分析的方法及基于多级局部二值模式的方法对比,结果显示文中方法维数更低,识别率更高,从而验证文中方法的有效性. The image is segmented at different levels to extract the uniform local binary pattern (ULBP) histogram features of the sub-block images. The global and local features are taken into account, and meanwhile the processing space is converted from the gray space to ULBP feature subspace. Consequently, the correlation between row vectors can be eliminated effectively. Thus, the discriminant projection matrix is performed better through row two-dimensional linear discriminant analysis (R2DLDA). Experimental results on ORL, YALE and FERET databases show that compared with some common methods based on 2DLDA and multilevel LBP, the proposed method achieves a higher recognition rate with a low feature dimension, which proves its effectiveness.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第10期894-899,共6页 Pattern Recognition and Artificial Intelligence
基金 福建省科技计划重点项目(No.2013H0030) 中央高校基本科研专项项目(No.JB-ZR1145) 华侨大学高层次人才科研项目(No.09BS102)资助
关键词 人脸识别 特征子空间 二维线性鉴别分析(2DLDA) 均匀模式的局部二值模式(ULBP) Face Recognition, Eigensubspace, Two-Dimensional Linear Discriminant Analysis(2DLDA), Uniform Local Binary Pattern(ULBP)
  • 相关文献

参考文献16

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition.New York, USA: John Wiley & Sons, 2001.
  • 2Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4Li M, Yuan B Z. 2D-LDA: A Statistical Linear Discriminant Analysis for Image Matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 5Noushath S, Kumar G H, Shivakumara P. (2D)2LDA: An Efficient Approach for Face Recognition. Pattern Recognition, 2006, 39(7): 1396-1400.
  • 6Ojala T, Pietikinen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition, 1996, 29(1): 51-59.
  • 7Ojala T, Pietikinen M, Menp T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 8苏煜,山世光,陈熙霖,高文.基于全局和局部特征集成的人脸识别[J].软件学报,2010,21(8):1849-1862. 被引量:117
  • 9Hadid A, Pietikinen M, Ahonen T. A Discriminative Feature Space for Detecting and Recognizing Faces // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Re- cognition. Washington, USA, 2004, II: 797-804.
  • 10Pu X R, Wang Y T. Face Detection on Partial and Holistic LBP Features // Proc of the International Conference on Electrical and Control Engineering. Yichang, China, 2011: 1071-1074.

二级参考文献21

  • 1王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 2李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 3张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 4TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 71- 86.
  • 5ETENMAD K, CHELLAPPA R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 6ZHANG J Y,FRANGI D, YANG A F, et al.. Two-dimensional PCA.. a new approach to appearance-based face representation and recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26 (1): 131-137.
  • 7HEISELE B, HO P, WU J, et al.. Face recognition: component-based versus global approaches[J]. Computer Vision and Image Understanding, 2003, 91(1/2) : 6-21.
  • 8PENEV P S, ATICK J J. Local feature analysis: a general statistical theory for object representation[J]. Network: Comput. Neural Syst., 1996, 7(3): 477-500.
  • 9BRUCE V, HANCOCK P J B, BURTON A M. Human Face Perception and Identification[M]. Berlin: Springer-Verlag , 1998:51-72.
  • 10SINHA P, BALAS B, OSTROVSKY Y, et al.. Face recognition by humans: nineteen results all computer vision researchers should know about[J]. IEEE, 2006, 94(11) : 1948-1962.

共引文献165

同被引文献69

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1261
  • 3吴贤伟,邰晓英,巴特尔.基于内容的彩色胃镜图像检索[J].计算机应用,2005,25(B12):248-250. 被引量:2
  • 4Chakraborti T, Chatterjee A. A novel binary adaptive weight GSA based feature selection for face recognition using local gradi- ent patterns, modified census transform, and local binary patterns I J]. Engineering Applications of Artificial Intelligence, 2014, 33 : 80-90. [DOI: 10. 1016/j. engappai. 2014.04. 006].
  • 5Huang Z H, Li W J, Wang J, et al. Face recognition based on pixel-level and feature-level fusion of the top-level's wavelet sub- bands[J]. Information Fusion, 2015, 22: 95-104. [DOI: 10. 1016/j. inffus. 2014.06. 001 ].
  • 6Tan K R, Chen S C. Adaptively weighted sub-pattern PCA for face recognition [ J ]. Neurecomputing, 2005, 64: 505-511. [DOI : 10. 1016/j. neucom. 2004.10.113 ].
  • 7Zuo W M, Zhang D, Yang J, et al. BDPCA plus LDA: a novel fast feature extraction technique for face recognition [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B : Cyber- netics, 2006, 36 (4) : 946-953. [DOI: 10. ll09/TSMCB. 2005. 863377 ].
  • 8Hu Haifeng. Variable lighting face recognition using discrete wavelet transform [ J]. Pattern Recognition Letters, 2011, 32 ( 13 ) : 1526-1534. [ DOI: 10. 1016/j. patree. 2011.06. 009 ].
  • 9Zhu NB, Tang T, Tang S, et al. A sparse representation method based on kernel and virtual samples for face recognition [ J ]. Optik-lnternational Journal for Light and Electron Optics, 2013, 124 (23) : 6236-6241. [ DOI : 10. 1016/j. ijleo. 2013.05. 017 ].
  • 10Bilaniuk O, Fazlemi E, Laganiere R, et al. Fast LBP Face Detec- tion on Low-Power SIMD Architectures [ C ]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington DC : IEEE Computer Society, 2014 : 630- 636.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部