期刊文献+

基于多种群离散差分进化的图像稀疏分解算法 被引量:1

Image Sparse Decomposition Algorithm Based on Multi-population Discrete Differential Evolution
下载PDF
导出
摘要 从过完备字典中得到图像的最稀疏表示是一个NP难问题,即使是次优的匹配追踪也相当复杂.针对Gabor多成份字典,提出基于多种群离散差分进化的图像稀疏分解算法.该算法采用3个子种群在不同成份子字典中搜索最佳匹配原子,父代通过多种变异算子生成多个子代,保持群体多样性,同时引入相关系数避免残差更新时多原子匹配重叠的问题.实验表明相比于快速匹配追踪算法,在稀疏逼近性能相当的情况下,文中算法的稀疏分解速度更快;与其他基于进化算法的稀疏分解方法相比,文中算法的稀疏逼近性能更优.最后的结果分析验证文中算法参数设置的合理性. To obtain the sparsest representation of an image using a redundant dictionary is NP-hard, and the existing sub-optimal algorithms for solving this problem such as matching pursuit (MP) are highly complex. An image sparse decomposition algorithm based on multi-population discrete differential evolution for multi-component Gabor dictionaries is proposed. Three sub-populations are adopted to search the best matching atoms in different sub-dictionaries, and the correlation coefficient is used to solve overlap-matching in updating process of residual image. To maintain the population diversity,several mutation operators are employed to generate the offspring population in the proposed algorithm. Experimental results show that the sparse approximation performances of the proposed algorithm are comparable with fast matching pursuit (FMP) algorithm. Meanwhile, the computation speed is improved. The proposed algorithm obtains competitive performance compared with other sparse representation methods based on evolution algorithm. Finally, the rationality of the parameters setting in the proposed algorithm is verified by result analysis.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第10期900-906,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.41201468) 北京市自然科学基金项目(No.4122022)资助
关键词 稀疏表示 多种群 差分进化(DE) 匹配追踪(MP) Sparse Representation, Multi-population, Differential Evolution ( DE), Matching Pursuit(MP)
  • 相关文献

参考文献18

  • 1Mallat S G, Zhang Z F. Matching Pursuits with Time-Frequency Dictionaries. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415.
  • 2Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3Yang J C, Wright J, Huang T S, et al. Image Super-Resolution via Sparse Representation. IEEE Trans on Image Processing, 2010, 19(11): 2861-2873.
  • 4甘涛,何艳敏.基于稀疏分解的可伸缩图像编码[J].电子学报,2010,38(1):156-160. 被引量:5
  • 5Figueras i Ventura R M, Vandergheynst P, Frossard P. Low-Rate and Flexible Image Coding with Redundant Representations. IEEE Trans on Image Processing, 2006, 15(3): 726-739.
  • 6孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43
  • 7Lobo A P, Loizou P C. Voiced/Unvoiced Speech Discrimination in Noise Using Gabor Atomic Decomposition // Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China, 2003, I: 820-823.
  • 8Davis G, Mallat S, Avellaneda M. Adaptive Greedy Approximations. Constructive Approximation, 1997, 13(l): 57-98.
  • 9Jaggi S, Karl W C, Mallat S, et al. High Resolution Pursuit for Feature Extraction. Applied and Computational Harmonic Analysis, 1998, 5(4): 428-449.
  • 10Blumensath T, Davis M E. Gradient Pursuits. IEEE Trans on Signal Processing, 2008, 56(6): 2370-2382.

二级参考文献60

  • 1尹忠科,王建英,Pierre Vandergheynst.一种新的图像稀疏分解快速算法[J].计算机应用,2004,24(10):92-93. 被引量:14
  • 2尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 3Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 4Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 5Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 6Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 7Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 9Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598

共引文献73

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部