期刊文献+

面向不同距离的实时人体检测与跟踪系统 被引量:4

Real-Time System for Human Detection and Tracking at Different Distances
下载PDF
导出
摘要 提出一种实时的覆盖不同距离的人体检测与跟踪系统,可快速准确检测和跟踪监控区域内出现的人体目标.该系统通过使用背景减除技术,分割背景与移动前景,缩小检测范围.针对在不同距离下便于提取的人体特征不同的情况,系统结合人体轮廓、头部、人脸等多种不同的特征描述、检测方式,并且充分利用视频信息在时间上的连续性及人体部分几何尺寸位置关系的先验知识,提高检测跟踪的效率和准确度.该系统较好地解决由于目标相对摄像机距离的改变导致跟踪失败或速度过慢的问题. A real-time robust human detection and monitoring area and then keep tracking. tracking system is proposed, which can detect people in the To reduce the working range, a background subtraction technique is used to segment the moving foreground and the background. Since each body feature has its optimum working distance, several different detectors such as frontal face, head, and pedestrian are combined. By taking the video sequence continuity and the human body geometry constraint into account, robust real-time detection is achieved. The proposed system reduces the occurrence of tracking failure and enhances performance even with dramatic distance change between camera and people.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第10期939-945,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61202237)资助
关键词 行人检测 人脸检测 实时跟踪 背景减除 Pedestrian Detection, Face Detection, Real-Time Tracking, Background Subtraction
  • 相关文献

参考文献12

  • 1Zhang C, Zhang Z Y. A Survey of Recent Advances in Face Detection. Technical Report, MSR-TR-2010-66. Redmond, USA: Microsoft Research, 2010.
  • 2Castrillón M, Déniz O, Guerra C, et al. ENCARA2: Real-Time Detection of Multiple Faces at Different Resolutions in Video Streams. Journal of Visual Communication and Image Representation, 2007, 18(2): 130-140.
  • 3Dollar P, Wojek C, Schiele B, et al. Pedestrian Detection: A Benchmark // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 304-311.
  • 4Amjad A, Griffiths A, Patwary M N. Multiple Face Detection Algorithm Using Colour Skin Modelling. IET Image Processing, 2012, 6(8): 1093-1101.
  • 5Zhou J P, Hoang J. Real Time Robust Human Detection and Trac- king System[EB/OL]. [2013-04-05]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1565316.
  • 6Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999. DOI: 10.1109/CVPR.1999.784637.
  • 7Elgammal A M, Harwood D, Davis L S. Non-parametric Model for Background Subtraction // Proc of the 6th European Conference on Computer Vision. Dublin, Ireland, 2000, Ⅱ: 751-767.
  • 8Kim K, Chalidabhongse T H, Harwood D, et al. Real-Time Foreground-Background Segmentation Using Codebook Model. Real-Time Imaging, 2005, 11(3): 172-185.
  • 9Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001, I: 511-518.
  • 10Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I: 886-893.

同被引文献26

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部