期刊文献+

基于四元数表示的一种改进的刚体动力学保辛积分 被引量:2

An Improved Symplectic Integration for Rigid Body Dynamics in Terms of Unit Quaternions
下载PDF
导出
摘要 根据四元数刚体动力学基本理论,将四元数时间导数与角速度之间的恒等变换引入动能项,由此可以直接得到非奇异的四元数质量矩阵.将其与分析结构力学结合,可以得到4种形式的保辛积分算法.该算法以离散系统作用量变分原理代替四元数微分方程,单位长度约束以代数约束的方式在积分格点处满足.数值仿真结果表明该方法不仅避免了陀螺稳态进动数值仿真中严重的章动误差,并且对于一般情况也展现出很大的精度改善. An identity transformation between the time derivative of quaternions and angular velocity was introduced into the kinetic energy term,according to the theory of quaternion-based rigid body dynamics.Mhis proposed approach yielded a non-singular mass matrix.Combined with the analytical structural mechanics,a newsymplectic integration scheme with 4 formulations,was proposed.In practice,the discrete variational principle of the action function was employed to replace the relevant quaternion differential equations for the proposed method.Correspondingly,the unit length constraint was met explicitly by means of the algebraic constraint at the integration grid points.The numerical results showthat the newscheme avoids the severe periodical nutation errors for the special cases of steady precession of a gyro top,which is a puzzling phenomenon in recent researches.In addition,the newscheme presents an impressive improvement of accuracy for the general cases as well.
出处 《应用数学和力学》 CSCD 北大核心 2014年第11期1177-1187,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(面上项目)(11472067)~~
关键词 分析结构力学 单位四元数 刚体动力学 保辛积分 恒等变换 重陀螺 analytical structural mechanics unit quaternion rigid body dynamics symplectic integration identity transformation heavy top
  • 相关文献

参考文献11

  • 1Goldstein H, Poole Jr C P, Safko J L. Classical Mechanics [ M ]. 3rd ed. Boston: Addison Wesley, 2002.
  • 2Mclachlan R I, Scovel C. Equivariant constrained symplectic integration [ J ] .Journal of Non- linear Science, 1995, 5(3): 233-255.
  • 3Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Al- gorithms for Ordinary Differential Equations[ M ] . Springer, 2005.
  • 4Wendlandt J M, Marsden J E. Mechanical integrators derived from a discrete variational prin- ciple[J]. Physica D: Nonlinear Phenomena, 1997, 106(3) : 223-245.
  • 5Simo J C, Wong K K. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum [ J ]. International Journal for Numerical Methods in Engi- neering, 1991, 31(1): 19-52.
  • 6Lens E V, Cardona A, Geradin M. Energy preserving time integration for constrained multi- body systems [ J ]. Multibody System Dynamics, 2004, 11 ( 1 ) : 41-51.
  • 7Betsch P, Steinmann P. Constrained integration of rigid body dynamics[ J]. Computer Meth- ods in Applied Mechanics and Engineering, 2001, 191( 3 ) : 467-488.
  • 8Betsch P, Siebert R. Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration [ J ]. International Journal for Numerical Methods in Engineering, 2009, 79(4) : 444-473.
  • 9Nielsen M B, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints[ J]. International Journal for Numerical Methods in Engineering, 2012, 92(8): 734-752.
  • 10Krenk S, Nielsen M B. Conservative rigid body dynamics by convected base vectors with im- plicit constraints[ J]. Computer Methods in Applied Mechanics and Engineering, 2014, 269 437-453.

二级参考文献8

共引文献7

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部