期刊文献+

Lagrange柱坐标高阶中心型守恒格式

Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry
下载PDF
导出
摘要 提出Lagrange柱坐标高阶中心型守恒格式.基于用对守恒律的单调迎风算法(MUSCL)构造的高阶子网格压力,引入了柱坐标高阶体权子网格力和柱坐标高阶面权子网格力,构造了柱坐标高阶体权中心型守恒格式和柱坐标高阶面权中心型格式.柱坐标高阶体权中心型守恒格式满足动量守恒、能量守恒,但不能确定保持一维球对称性.柱坐标高阶面权中心型格式满足能量守恒,保持一维球对称性.两种格式里,格点速度以与网格面的数值通量相容的方式计算.对Saltzman活塞问题等进行了数值模拟,数值结果显示Lagrange柱坐标高阶中心型守恒格式的有效性和精确性. A Lagrange high order cell-centered conservative scheme in cylindrical geometry was presented for gas dynamics.The high order volume weighting subcell force in cylindrical geometry and the high order area weighting subcell force in cylindrical geometry were introduced by means of the MU SCL type method to construct 2 Lagrange high order cell-centered conservative schemes in cylindrical geometry.The vertex velocities and the numerical fluxes through the cell interfaces were evaluated in a consistent manner due to an original solver located at the nodes.The volume weighting scheme satisfies the momentum conservation and energy conservation,but does not surely keep the 1D spherical symmetry.The area weighting scheme satisfies the energy conservation and preserves the 1D spherical symmetry.2 numerical tests were conducted.The results demonstrate that the newscheme is a high order one with satisfactory validity and accuracy.
作者 葛全文
出处 《应用数学和力学》 CSCD 北大核心 2014年第11期1218-1231,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11172050 11372051 11001027)~~
关键词 柱坐标高阶体权子网格力 柱坐标高阶面权子网格力 Lagrange柱坐标高阶中心型守恒格式 柱坐标 high order volume weighting subcell force high order area weighting subcell force Lagrange high order cell-centered conservative scheme cylindrical geometry
  • 相关文献

参考文献4

二级参考文献49

  • 1Malre P H, Abgrall R, Breil J, Ovadia J. A cell-centered Lagrangian scheme for compressible flow problems[J]. SIAMJScien Comp, 2007, 29(4) : 1781-1824.
  • 2von Neumann J, Richtmyer R D. A method for the numerical calculations of hydrodynamica shocks[J]. JAppl Phys, 1950, 21, 232-238.
  • 3Wilkins M L. Calculation of elastic plastic flow [ C ]//Bider B, Fernbach S. Methods in Com- putationnal Physics. 3. New York: Academic, 1954.
  • 4Caramana E J, Shashkov M J. Elimination of artificial grid distorsion and hourglass-type mo- tions by means of Lagrangian subzonal masses and pressures[ J]. J Comput Phys, 1998, 142 (2) : 521-561.
  • 5Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multidi- mensional shock wave computations[J]. J Comput Phys, 1998, 144( 1 ) : 70-97.
  • 6Campbell J C, Shashov J C. A tensor artificial viscosity using a mimetic fmite difference algo- rithm[J]. J Comput Phys, 2001, 172(4) : 739-765.
  • 7Caramana E J, Burton D E, Shashov M J, Whalen P P. The construction of compatible hy- drodynamics algorithms utilizing conservation of total energy[J]. J Comput Phys, 1998, 146 ( 1 ) : 227-262.
  • 8Campbell J C, Shashov M J. A compatible Lagrangian hydrodynamics algorithm for unstruc- tured grids[J]. Selvuk JAppl Math, 2003, 4(2) : 53-70.
  • 9Scovazzi G, Christon M A, Hughes T J R, Shadid J N. Stabilized shock hydrodynamics-- I : a Lagrangian method[J]. Comput Methods Appl Mech and Engrg, 2007, 196(4) : 923-966.
  • 10Scovazzi G. Stabilized shock hydrodynamics II : design and physical interpretation of the SUPG operator for Lagrangian computations [ J ]. Comput Methods Appl Mech and Engrg, 2007. 196(4/6) : 966-978.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部