期刊文献+

基于PLS和SVM的纸张抗张强度建模比较 被引量:8

Comparison of Paper Tensile Strength Prediction Models Based on PLS and SVM Methods
下载PDF
导出
摘要 为解决纸张抗张强度预测模型实际相关性差、预测精度低的问题,基于某瓦楞纸厂生产线,通过机理分析筛选出影响抗张强度的生产变量,分别使用偏最小二乘法(PLS)和支持向量机法(SVM)对抗张强度建模,并通过相关性筛选后的简化模型对模型预测精度进行比较.结果表明,简化后的支持向量机模型更适合纸张抗张强度的现场预测,其均方根误差为321N/m,皮尔逊相关系数为0.909,预测速度快且模型精度较高. In order to solve the problems of poor practicality and low accuracy of the existing paper tensile strength prediction models , two prediction models respectively based on the partial least-squares ( PLS ) and the support vector machine ( SVM) are established for a corrugated paper mill by selecting parameters affecting paper tensile strength through mechanism analysis .Then, the two models are simplified by deleting parameters of low correlation with tensile strength , and the simplified models are compared in terms of prediction accuracy .The results show that the simplified SVM model , whose root mean square error and Pearson correlation coefficient are 321 N/m and 0.909 respectively , is a quick prediction model with a high accuracy , so it is more suitable for the on-line prediction of tensile strength .
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第7期132-137,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(20906030) 广东省科技计划项目高科技发展专项资金项目(20130119g) 华南理工大学中央高校基本科研业务费专项资金资助项目(2014ZZ0055) 华南理工大学制浆造纸工程国家重点实验室开放基金资助项目(201233) 广东省科技计划重大科技专项(2010A080801002)
关键词 纸张 抗张强度 建模 偏最小二乘法 支持向量机 paper tensile strength modeling partial least squares support vector machines
  • 相关文献

参考文献16

  • 1Scott W. Potential application of predictive tensile strength models in paper manufacture ( Part 1I ) : integration of atensile strength model with a dynamic paper machine ma- terial balance simulation [ C]//TAPPI Papermakers Con- ference Proceedings. Atlanta:GA TAPPI Press, 2001.
  • 2Page D H. A theory for the tensile strength of paper [ J ]. TAPPI Journal, 1969,52 (4) : 674- 679.
  • 3Anson S J I', Karademir A, Sampson W W. Specific con- tact area and the tensile strength of paper [ J ]. Appita Journal,2006,59 (4) :297.
  • 4陶劲松,刘焕彬,陈小泉,沈文浩,朱小林.纸页水分含量对纤维相对结合面积和剪切抗张强度的影响[J].造纸科学与技术,2007,26(2):1-5. 被引量:8
  • 5De Ruyo A, Fellers C. Paper structure and properties [ J ]. Marcel Dekker, 1986,24 (6) :67.
  • 6Axelsson A. Fibre based models for predicting tensile strength of paper [ D ]. Finland: Lulei University of Technology,2009.
  • 7王宝玉.木浆纤维表面化学特性与纸页强度关系的研究[D].广州:华南理工大学轻工与食品学院,2011.
  • 8Navita, Kumar Ra. Articficial neural network modeling for tensile strength of paper in paper manufacturing process international [ J ]. Information Technology and Knowledge Management, 2011,4 ( 2 ) : 409- 412.
  • 9Wold S, Ruhe A, Wold H, et al. The collinearity problem in linear regression, the partial least squares ( PLS ) ap- proach to generalized inverses [ J] . SIAM Journal on Sci- entific and Statistical Computing, 1984,5 (3) :735-743.
  • 10Vapnik V. The nature of statistical learning theory [ M ]. New York : Springer, 2000.

二级参考文献12

共引文献46

同被引文献103

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部