摘要
为解决纸张抗张强度预测模型实际相关性差、预测精度低的问题,基于某瓦楞纸厂生产线,通过机理分析筛选出影响抗张强度的生产变量,分别使用偏最小二乘法(PLS)和支持向量机法(SVM)对抗张强度建模,并通过相关性筛选后的简化模型对模型预测精度进行比较.结果表明,简化后的支持向量机模型更适合纸张抗张强度的现场预测,其均方根误差为321N/m,皮尔逊相关系数为0.909,预测速度快且模型精度较高.
In order to solve the problems of poor practicality and low accuracy of the existing paper tensile strength prediction models , two prediction models respectively based on the partial least-squares ( PLS ) and the support vector machine ( SVM) are established for a corrugated paper mill by selecting parameters affecting paper tensile strength through mechanism analysis .Then, the two models are simplified by deleting parameters of low correlation with tensile strength , and the simplified models are compared in terms of prediction accuracy .The results show that the simplified SVM model , whose root mean square error and Pearson correlation coefficient are 321 N/m and 0.909 respectively , is a quick prediction model with a high accuracy , so it is more suitable for the on-line prediction of tensile strength .
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第7期132-137,共6页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(20906030)
广东省科技计划项目高科技发展专项资金项目(20130119g)
华南理工大学中央高校基本科研业务费专项资金资助项目(2014ZZ0055)
华南理工大学制浆造纸工程国家重点实验室开放基金资助项目(201233)
广东省科技计划重大科技专项(2010A080801002)
关键词
纸张
抗张强度
建模
偏最小二乘法
支持向量机
paper
tensile strength
modeling
partial least squares
support vector machines