摘要
主要研究了具有标准发生率和因病死亡率的离散SIS传染病模型的动力学性质,利用构造Lyapunov函数,得到模型无病平衡点和地方性平衡点的全局稳定性,即无病平衡点是全局渐近稳定的当且仅当基本再生数R_0≤1,地方病平衡点是全局渐近稳定的当且仅当R_0>1.
In this paper, we study the discrete-time SIS epidemic model with standard inci- dence and disease-induced mortality. Global stability of disease-free equilibrium and endemic equilibrium for this model are established by constructing suitable Lyapunov functions. That is, the disease-free equilibrium is globally asymptotically stable if and only if the basic repro- duction number R0 ≤ 1, and the endemic equilibrium is globally asymptotically stable if and only if the basic reproduction number R0 〉 1.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第19期310-316,共7页
Mathematics in Practice and Theory
基金
新疆自治区教育厅高校科研计划项目(XJEDU2012S20)
新疆维吾尔自治区自然科学基金(2014211C014)
国家自然科学基金(11201399)
新疆医科大学校内支撑学科-卫生计量与卫生经济学(XYDXK50780308)