期刊文献+

具有标准发生率和因病死亡率的离散SIS传染病模型的全局稳定性分析 被引量:3

Global Stability of Discrete-Time SIS Epidemic Model with Standard Incidence and Disease-Induced Mortality
原文传递
导出
摘要 主要研究了具有标准发生率和因病死亡率的离散SIS传染病模型的动力学性质,利用构造Lyapunov函数,得到模型无病平衡点和地方性平衡点的全局稳定性,即无病平衡点是全局渐近稳定的当且仅当基本再生数R_0≤1,地方病平衡点是全局渐近稳定的当且仅当R_0>1. In this paper, we study the discrete-time SIS epidemic model with standard inci- dence and disease-induced mortality. Global stability of disease-free equilibrium and endemic equilibrium for this model are established by constructing suitable Lyapunov functions. That is, the disease-free equilibrium is globally asymptotically stable if and only if the basic repro- duction number R0 ≤ 1, and the endemic equilibrium is globally asymptotically stable if and only if the basic reproduction number R0 〉 1.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第19期310-316,共7页 Mathematics in Practice and Theory
基金 新疆自治区教育厅高校科研计划项目(XJEDU2012S20) 新疆维吾尔自治区自然科学基金(2014211C014) 国家自然科学基金(11201399) 新疆医科大学校内支撑学科-卫生计量与卫生经济学(XYDXK50780308)
关键词 离散SIS模型 标准发生率 全局渐近稳定 LYAPUNOV函数 基本再生数 Discrete-time SIS model standard incidence global stability Lyapunov function basic reproduction number
  • 相关文献

参考文献2

二级参考文献18

  • 1杨光,张庆灵.对Logistic增长的SIS模型实现反馈线性化和极点配置的一步设计[J].生物数学学报,2006,21(2):261-269. 被引量:4
  • 2Acevedo, H.G., Li, Michael Y. Backward bifrucation in a model for HTLV-I infection of CD4+ T cells . Bulletin or Mathematical Biology, 67:101- 114 (2005)
  • 3Brauer, F. Backward bifurcation in simple vaccination models. J. Math. Anal. Appl., 289:418-431 (2004)
  • 4Dushoff, J., Huang, W., C-Chavez, C. Backward bifurcation and catastrophe in simple models of fatal diseases. J. Math. Biol., 36:227 -248 (1998)
  • 5Hui, J., Zhu, D.M. Global stability and periodicity on SIS epidemic models with backward bifurcation. Comp. Math. Appl., 50:1271- 1290 (2005)
  • 6Hadeler, K.P., C-Chavez, C. A core group model for disease transmission. Math. Biosci., 128:41-55 (1995)
  • 7Hadeler, K.P., Van den driessche, P. Backward bifurcation in epidemic control. Math. Biosci., 146:15-33 (1997)
  • 8K-Zaleta, C.M., V-Hernandez, Jorge X. A simple vaccination model with multiple endemic states. Math. Biosci., 164:183 -201(2000)
  • 9Li, J.Q., Ma, Z.E., Zhou, Y.C. Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria. Acta. Math. Scientia, 300:273-284 (2004)
  • 10Perko, L. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1996

共引文献11

同被引文献16

  • 1苟清明.一类具有阶段结构和标准发生率的SIS模型[J].西南大学学报(自然科学版),2007,29(9):6-13. 被引量:7
  • 2ZHANG T,TENG Z. Permanence and existction for a nonautonomous SIRS epidemic model with time de-lay,Appl[J]. Math. Model, 2009,33 .. 1058-1071.
  • 3LI C,SAI C, YANG S. Permanence of an SIR epidemic model with delay dependent birth rate and distributed time delay[J]. Applied Mathematics and Computation,2011,218.. 1682-1693.
  • 4BAI Z. Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contast rate[J]. Nonlinear Analy sis:Real world Applicationg,2012,13(3) ..1060-1068.
  • 5CAO H, ZHOU YC. The discrete age-structured SEIT model with application to tuberculosis transmission in China[J]. Math. Comput. Model, 2012,55 (3) .. 385-395.
  • 6ZHOU YC, MAZE. Global stability of a class of discrete age-structured SIS models with immigration[J]. Math. Biosci. Eng, 2009,6 : 409-425.
  • 7MA X,ZHOU YC,CAO H. Global stability of the endemic equilibrium of a discrete SIR epidemic model[J] ,Advances in Di- erence Equations,2013,4(1) :1-19.
  • 8ALLEN L,van den Driessche P. The basic reproduction number in some discrete-time epidemic models[J]. J. Difference E quations and Applications, 2008,14 1127-1147.
  • 9ELAYDY S. An introduction to difference equations[M]. New York: Sprink, 2004,204-255.
  • 10杜艳可,徐瑞.一类具有标准发生率的SI型传染病模型的全局稳定性[J].军械工程学院学报,2008,20(2):72-75. 被引量:7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部