期刊文献+

Analysis of flatband voltage shift of metal/high-k/SiO_2/Si stack based on energy band alignment of entire gate stack

Analysis of flatband voltage shift of metal/high-k/SiO_2/Si stack based on energy band alignment of entire gate stack
下载PDF
导出
摘要 A theoretical model of flatband voltage (VFB) of metal/high-k/Si02/Si stack is proposed based on band alignment of entire gate stack, i.e., the VFB is obtained by simultaneously considering band alignments of metal/high-k, high-k/SiO2 and SiO2/Si interfaces, and their interactions. Then the VFB of TiN/HfO2/SiO2/Si stack is experimentally obtained and theoretically investigated by this model. The theoretical calculations are in good agreement with the experimental results. Furthermore, both positive VFB shift of TiN/HfO2/SiO2/Si stack and Fermi level pinning are successfully interpreted and attributed to the dielectric contact induced gap states at TiN/HfO2 and HfO2/SiO2 interfaces. A theoretical model of flatband voltage (VFB) of metal/high-k/Si02/Si stack is proposed based on band alignment of entire gate stack, i.e., the VFB is obtained by simultaneously considering band alignments of metal/high-k, high-k/SiO2 and SiO2/Si interfaces, and their interactions. Then the VFB of TiN/HfO2/SiO2/Si stack is experimentally obtained and theoretically investigated by this model. The theoretical calculations are in good agreement with the experimental results. Furthermore, both positive VFB shift of TiN/HfO2/SiO2/Si stack and Fermi level pinning are successfully interpreted and attributed to the dielectric contact induced gap states at TiN/HfO2 and HfO2/SiO2 interfaces.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期536-540,共5页 中国物理B(英文版)
基金 supported by the National Natural Science of China(Grant Nos.61176091 and 50932001)
关键词 metal gate high-k dielectric band alignment Vfb shift metal gate, high-k dielectric, band alignment, Vfb shift
  • 相关文献

参考文献21

  • 1Hou Y T, Yen F Y, Hsu P F, Chang V S, Lim P S, Hung C L, Yao L G, Jiang J C, Lin H J, Jin Y, Jang S M, Tao H J, Chen S C and Liang M S 2005 IEDM Technical Digest. IEEE International, December 5-7, 2005 Washington, USA, p. 31.
  • 2Jha R, Gurganos J, Kim Y H, Choi R, Lee J and Misra V 2004 IEEE Electron Dev. Lett. 25 420.
  • 3Wang X L, Han K, Wang W W, Ma X L, Chen D P, Zhang J, Du J, Xiong Y H and Huang A P 2010 Appl. Phys. Lett. 97 062901.
  • 4Choi K, Wen H C, G Bersuker, Harris R and Lee B H 2008 Appl. Phys. Lett. 93 133506.
  • 5Sze S M and Ng K K 2006 Physics of Semiconductor Devices (3rd edn.) (New York: John Wiley & Sons Ltd.).
  • 6Kita K and Toriumi A 2009 Appl. Phys. Lett. 94 132902.
  • 7Shiraishi K, Akasaka Y, Nakamura G, Kadoshima M and Ohta A 2007 Electrochem. Soc. Trans. 11 125.
  • 8Iwamoto K, Kamimuta Y, Ogawa A, Watanabe Y, Migita S, Mizubayashi W, Morita Y, Takahashi M, Ota H, Nabatame T and Toriumi A 2008 Appl. Phys. Lett. 92 132907.
  • 9Kamimuta Y, Iwamoto K, Nunoshige Y, Hirano A, Mizubayashi W, Watanabe Y, Migita S, Ogawa A, Ota H, Nabatame T and Toriumi A 2007 Electron Devices Meeting, IEDM IEEE International, December 10-12, 2007 Washington USA, p. 341.
  • 10Kirsch P D, Sivasubramani P, Huang J, et al. 2008 Appl. Phys. Lett. 92 092901.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部