期刊文献+

Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals

Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals
下载PDF
导出
摘要 A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318--403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band. A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318--403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期566-571,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grand Nos.60907021,60977035,and 60877029) the Natural Science Foundation of Tianjin,China(Grant No.11JCYBJC00300)
关键词 temperature-dependent photoluminescence photoluminescence lifetime quaternary nanocrystals white light emitting device temperature-dependent photoluminescence, photoluminescence lifetime, quaternary nanocrystals, white light emitting device
  • 相关文献

参考文献38

  • 1Schlamp M, Peng X G and Alivisatos A 1997 J. App. Phys. 82 5837.
  • 2Hernández-Borja, Vorobiev Y V and Ramírez-Bon R 2011 Sol. Energ. Mat. Sol. C 95 1882.
  • 3Li F, Cho S H, Son D I, Park K H and Kim T W 2008 Appl. Phys. Lett. 92 102110.
  • 4Kannan V and Rhee J K 2012 Appl. Phys. A 108 59.
  • 5Gardner J S, Shurdha E, Wang C, Lau L D, Rodriguez R G and Pak J J 2007 J. Nanopart. Res. 10 633.
  • 6Allen P M and Bawendi M G 2008 J. Am. Chem. Soc. 130 9240.
  • 7Bensebaa F, Durand C, Aouadou A, Scoles L, Du X Wang D and Page Y 2009 J. Nanopart. Res. 12 1897.
  • 8Pein A, Baghbanzadeh M, Rath T, Haas W, Maier E, Amenitsch H, Hofer F, Kappe C O and Trimmel G 2006 Chem. Mater. 18 3330.
  • 9Dai M, Ogawa S, Kameyama T, Okazaki K I, Kudo A, Kuwabata S, Tsuboi Y and Torimoto T 2012 J. Mater. Chem. 22 12851.
  • 10Zhong H Z, Bai Z L and Zou B S 2012 J. Phys. Chem. Lett. 3 3167.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部