期刊文献+

Application of two special orbits in the orbit determination of lunar satellites 被引量:2

Application of two special orbits in the orbit determination of lunar satellites
下载PDF
导出
摘要 Using inter-satellite range data, the combined autonomous orbit determina- tion problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular restricted three-body problem, and then generalized to the real force model of the Earth-Moon system. Two kinds of spe- cial orbits are discussed: collinear libration point orbits and distant retrograde orbits. Studies show that the orbit determination accuracy in both cases can reach that of the observations. Some important properties of the system are carefully studied. These findings should be useful in the future engineering implementation of this conceptual study. Using inter-satellite range data, the combined autonomous orbit determina- tion problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular restricted three-body problem, and then generalized to the real force model of the Earth-Moon system. Two kinds of spe- cial orbits are discussed: collinear libration point orbits and distant retrograde orbits. Studies show that the orbit determination accuracy in both cases can reach that of the observations. Some important properties of the system are carefully studied. These findings should be useful in the future engineering implementation of this conceptual study.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第10期1307-1328,共22页 天文和天体物理学研究(英文版)
基金 Supported by the National Natural Science Foundation of China
关键词 celestial mechanics -- space vehicles -- Moon -- methods NUMERICAL celestial mechanics -- space vehicles -- Moon -- methods numerical
  • 相关文献

参考文献41

  • 1Arnol'd, V. I. 1999, Mathematical Methods of Classical Mechanics (2nd ed., Beijing: World Publishing Corporation).
  • 2Bell, D. J., Cesarone, R., Ely, T., et al. 2000, in Aerospace Conference Proceedings, 2000 IEEE, 7, 75.
  • 3Bray, T. A., & Goudas, C. L. 1967, Advances in Astronomy and Astrophysics, 5, 71.
  • 4Carpenter, J. R., Folta, D. C., Moreau, M. C., et al. 2004, in AIAA/AAS Astrodynamical Specialist Conference, 4747.
  • 5Chung, M. J., Hatch, S. J., Kangas, J. A., et al. 2010, in AIAA/AAS Astrodynamical Specialist Conference, 8384.
  • 6Doedel, E. J. 1981, Congressus Numerantium, 30, 265.
  • 7Doedel, E. J., Romanov, V. A., Paffenroth, R. C., et al. 2007, International Journal of Bifurcation and Chaos, 17, 2625.
  • 8Farquhar, R. W. 1967, Journal of Spacecraft and Rockets, 4, 1383.
  • 9Farquhar, R. W. 1972, Astronaut Aeronaut, 10, 59.
  • 10Farquhar, R. W., Dunham, D. W., Guo, Y., & McAdams, J. V. 2004, Acta Astronautica, 55,687.

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部