期刊文献+

利用代谢工程改善大肠杆菌的3-脱氢莽草酸生产 被引量:1

Improving 3-dehydroshikimate production by metabolically engineered Escherichia coli
原文传递
导出
摘要 3-脱氢莽草酸是芳香族氨基酸合成代谢途径中的一种重要中间产物。除可作为一种高效的抗氧化剂,还可用于合成己二酸、香草醛等一些重要的化工产品,具有重要的应用价值。相关研究证明具有去酪氨酸反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroFFBR以及转酮醇酶基因tktA可以有效影响3-脱氢莽草酸的过量合成。通过增加aroFFBR和tktA串联过量表达的拷贝数,可使工程菌株在摇瓶发酵条件下3-脱氢莽草酸产量提高2.93倍。通过同源重组无痕基因敲除技术依次敲除出发菌大肠杆菌Escherichia coli AB2834的乳酸、乙酸、乙醇等副产物合成途径中的重要基因ldhA、ackA-pta和adhE,可使工程菌株的3-脱氢莽草酸产量进一步提高,达到了1.83 g/L,是初始出发菌株大肠杆菌E.coli AB2834产量的6.7倍。利用5 L发酵罐进行分批补料发酵,62 h后工程菌株3-脱氢莽草酸产量达到了25.48 g/L。本研究可为构建有应用前景的3-脱氢莽草酸生产菌株提供重要参考。 In the aromatic amino acid biosynthetic pathway 3-dehydroshikimate (DHS) is a key intermediate. As a potent antioxidant and important feedstock for producing a variety of important industrial chemicals, such as adipate and vanillin, DHS is of great commercial value. Here, in this study, we investigated the effect of the co-expression of aroFFBR (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase mutant with tyrosine feedback-inhibition resistance)and tktA (Transketolase A) at different copy number on the production of DHS. The increased copy number of aroFFBR and tktA would enhance the production of DHS by the fold of 2.93. In order to further improve the production of DHS, we disrupted the key genes in by-product pathways of the parent strain Escherichia coli AB2834. The triple knockout strain of ldhA, ackA-pta and adhE would further increase the production of DHS. The titer of DHS in shake flask reached 1.83 g/L, 5.7-fold higher than that of the parent strain E. coli AB2834. In 5-L fed-batch fermentation, the metabolically engineered strain produced 25.48 g/L DHS after 62 h. Metabolically engineered E. coli has the potential to further improve the production of DHS.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第10期1549-1560,共12页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(No.2011CBA00800) 中国科学院科研装备项目(No.YZ201153)资助~~
关键词 3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶 转酮醇酶 副产物合成途径 3-脱氢莽草酸 代谢工程 大肠杆菌 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, transketolase, by-product pathway, 3-dehydroshikimate,metabolic engineering, Escherichia coli
  • 相关文献

参考文献25

  • 1Draths KM, Kambourakis S, Li K, et al. Chemicals and Materials from Renewable Resources. Washington DC: American Chemical Society, 2001: 133-146.
  • 2Li K, Frost JW. Synthesis of vanillin from glucose. J Am Chem Soe, 1998, 120(40): 10545-10546.
  • 3Draths KM, Frost JW. Environmentally compatible synthesis of catechol from D-glucose. J Am Chem Soc, 1995, 117(9): 2395-2400.
  • 4Draths KM, Frost JW. Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc, 1994, 116(1): 399-400.
  • 5Richman JE, Chang YC, Kambourakis S, et al. Reaction of 3-dehydroshikimic acid with molecular-oxygen and hydrogen peroxide: products, mechanism, and associated antioxidant activity. J Am Chem Soc, 1996, 118(46): 11587-11591.
  • 6Licona-Cassani C, Lara AR, Cabrera-Valladares N, et al. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis. J Mol Microbiol Biotechnol, 2013, 24(1): 37-45.
  • 7Li K, Mikola MR, Draths KM, et al. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnol Bioeng, 1999, 64(1): 61-73.
  • 8Bongaerts J, Kramer M, Muller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng,2001, 3(4): 289-300.
  • 9Kramer M, Bongaerts J, Bovenberg R, et al. Metabolic engineering for microbial production of shikimic acid. Metab Eng, 2003, 5(4): 277-283.
  • 10Shen T, Liu Q, Xie x, et al. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. J Biomed Biotechnol, 2012, 2012: 605219.

二级参考文献97

  • 1高山林,方云进,戚一文.用ASPEN PLUS软件预测水-2,3-丁二醇汽液相平衡数据[J].浙江化工,2007,38(3):25-28. 被引量:12
  • 2Zhu Y,Eiteman MA,DeWitt K,et al.Homolactate fermentation by metabolically engineered Escherichia coli strains.Appl Environ Microbiol,2007,73(2): 456-464.
  • 3Datsenko KA,Wanner BL.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.Proc Natl Acad Sci USA,2000,97(12): 6640-6645.
  • 4Chang DE,Jung HC,Rhee JS,et al.Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1.Appl Environ Microbiol,1999,65(4): 1384-1389.
  • 5Zhu J,Shimizu K.The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.Appl Microbiol Biotechnol,2004,64(3): 367-375.
  • 6Zhu JF,Shimizu K.Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition.Metab Eng,2005,7(2): 104-115.
  • 7Grabar TB,Zhou S,Shanmugam KT,et al.Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(-)-lactate fermentations by recombinant Escherichia coli.Biotechnol Lett,2006,28(19): 1527-1535.
  • 8Bloor AE,Cranenburgh RM.An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes.Appl Environ Microbiol,2006,72(4): 2520-2525.
  • 9Overhage J,Priefert H,Rabenhorst J,et al.Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp.strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene.Appl Microbiol Biotechnol,1999,52(6): 820-828.
  • 10马学军,舒跃龙译.精编分子生物学实验指南.4 版.: 科学出版社,2005: 2.

共引文献16

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部