期刊文献+

超强酸化Fe_2O_3-TiO_2-N在可见光下降解丙烯酸的研究(英文)

Degradation Effect of Super Acid Modified Fe_2O_3-TiO_2-N on Acrylic Acid under Visible Light
下载PDF
导出
摘要 通过水解沉淀法和H2SO4浸渍干凝胶的方法,制备了具有可见光活性的超强酸化的Fe2O3-TiO2-N光催化剂。XRD测试结果表明,所制得的催化剂为锐钛矿型,且H2SO4处理显著抑制了晶粒的长大。UV-Vis分析表明,N、Fe掺杂样品相比纯TiO2有一定的红移,而浸渍硫酸的处理使样品的光吸收蓝移。原位红外的测试表明,H2SO4浸渍提高了催化剂的表面酸性,XPS测试说明了S以+6价存在于催化剂中。对丙烯酸的光降解试验表明,相比单独N掺杂的TiO2,所得的超强酸化的Fe、N共掺杂光催化剂活性提高了57%。 Super acid modified Fe2O3-TiO2-N was prepared by hydrolysis precipitation method and sulfuric acid impregnation method. X-ray diffraction(XRD) showed that the catalysts were anatase, Fe2O3 were highly decentralized in the catalysts with amorphous form, and modification of SO4^2- inhibited grain growth. Ultraviolet-visible spectra(UV-Vis) showed that Fe and N co-doping made the visible light absorption to the red shift, and sulfuric acid impregnation treatment made the light absorption to the blue shift. Diffuse reflectance Fourier transform infrared(DRIFT-IR) spectra showed that sulfuric acid impregnation can improve the surface acidity of catalysts. X-ray photoelectron spectra(XPS) showed that the valence of S was +6 in the catalysts. Its photocatalytic activity on the degradation of acrylic acid under visible light was studied. The one hour degradation rate of super acid modified Fe2O3-TiO2-N catalyst under visible light was improved 57% than that of the N-doping sample under the same condition.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2014年第10期1110-1114,共5页 Journal of Inorganic Materials
关键词 共掺杂 降解 可见光 光催化 co-doping degradation visible light photocatalytic
  • 相关文献

参考文献11

  • 1FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38.
  • 2FUJISHIMA A, RAO T, TRYK D. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1–21.
  • 3ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293 (5528): 269–271.
  • 4UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002, 81(3): 454–456.
  • 5YU J C, YU J G, HO W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14: 3808–3816.
  • 6SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon modified titanium dioxide. Angew. Chem. Int. Ed., 2003, 42(40): 4908–4911.
  • 7Mwangi I W, Ngila J C, Ndungu P, et al. Immobilized Fe (III)-doped titanium dioxide for photodegradation of dissolved organic compounds in water. Environmental Science and Pollution Research, 2013, 20(9): 6028–6038.
  • 8YALCIN Y, KILIC M, CINAR Z. Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 2010, 99(3/4): 469–477.
  • 9LEE SEUNG JOON, HAN SANG WOO, YOON MINJOONG, et al. Adsorption characteristics of 4-dimethylaminobenzoic acid on silver and titania: diffuse reflectance infrared Fourier transform spectroscopy study. Vibrational Spectroscopy, 2000, 24(2): 265–275.
  • 10GOLE J L, STOUT J D, BURDA C, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. The Journal of Physical Chemistry B, 2004, 108(4): 1230–1240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部