期刊文献+

果蔬采摘欠驱动机械手爪设计及其力控制 被引量:51

Design and Force Control of an Underactuated Robotic Hand for Fruit and Vegetable Picking
下载PDF
导出
摘要 为了实现果蔬的无损采摘,采用欠驱动原理设计出一种结构更简单、通用性更强的末端执行器。欠驱动机构是指驱动器数目少于机构本身自由度数目的机构,基于欠驱动原理设计的机械手结构简单可靠,抓取物体时具有形状自适应能力,手指可完全包络物体,可以通过最大接触力的闭环力反馈控制来实现无损采摘。基于这一设计思想设计出仅靠一个电动机驱动三个手指的机械手爪,通过理论分析、手爪机构设计与建模、结构参数优化,确定设计尺寸制出机械手爪,设计控制电路结合力反馈控制进行抓取试验。试验结果表明该手爪能实现期望的抓取与最大接触力控制功能,并具有控制简单可靠、抓取稳定、不损伤果实等特点。 To achieve non-destructive fruit and vegetable picking, an end-actuator with a simpler and more versatile structure is designed based on underactuated principle. The underactuated mechanism refers to machine that has fewer drivers compared with the number of degrees of freedom. The robotic hand designed by adopting the underactuated principle is simpler and more reliable. Due to simple structure and better adaptability to shape of objects, the robotic hand can fold the object completely with its fingers. Non-destructive harvesting is achieved by using a closed-loop force-feedback control algorithm which controls the maximum contact forces. Based on this design idea, a three-finger gripper which is driven by only one motor is designed. Through theoretical analysis, mechanism design and modeling, and structural optimization, the final model size is determined and physical production is completed. A control circuit combined with force-feedback control is designed for grasping experiments. The experimental results show that the robotic hand can achieve the desired grasping function, maximum contact force control and has such features as simple and reliable control, stable grasping and non-damaging.
作者 金波 林龙贤
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第19期1-8,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金创新研究群体科学基金资助项目(51221004)
关键词 果蔬采摘 机械手爪 欠驱动 抓取试验 最大接触力控制 fruit and vegetable picking robotic hand underactuated grasping experiments maximum contact force control
  • 相关文献

参考文献14

  • 1李秦川,胡挺,武传宇,胡旭东,应义斌.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179. 被引量:72
  • 2KONDA N, TING K C. Robotics for plant production[J]. Artificial Intelligence Review, 1998, 12(1-3): 227-243.
  • 3MONTA M, KONDO N, TING K C. End-effectors for tomato harvesting robot[J]. Artificial Intelligence Review, 1998, 12(1-3): 11-25.
  • 4SHIGEHIKO H , KENTA S. Valuation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105(2): 160-171.
  • 5RYU K H, KIM G, HAN J S. Development of a robotic transplanter for bedding plants[J]. J. Agr. Eng. Res., 2001, 78(2): 141-146.
  • 6ZHAO Dean, LU Jidong, JI Wei, et al. Design and control of an apple harvesting robot[J]. Biosystems Engineering, 2011, 110(2): 112-122.
  • 7刘长林,张铁中,杨丽.茄子采摘机器人末端执行器设计[J].农机化研究,2008,30(12):62-64. 被引量:20
  • 8THIERRY L, BIRGLEN L, GOSSELIN C M. Underactuation in robotic grasping hands[J]. Machine Intelligence and Robotic Control, 2002, 4(3): 1-11.
  • 9BEGOC V, KRUT S, DOMBER E, et al. Mechanical design of a new pneumatically driven underactuated hand[C]//IEEE International Conference on Robotics and Automation, Roma, Italy, 2007: 927-933.
  • 10JOHAN T, BOYKO I, ALEXANDER S, et al. Real life grasping using an under-actuated robot Hand-simulation and experiments[C]//IEEE International Conference on Advanced Robotics, Munich, 2009: 1-8.

二级参考文献35

共引文献86

同被引文献389

引证文献51

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部